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z-transform

X(z) = Z x[n|z™"
ROC =1z ;(E_TX(Z)' < 00}
need to specify both algebraic formula for X (z) and the ROC
the ROC never contains poles

zeros may lie in the ROC

ROC is always circular



z-transform is a “surface”

This figure was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.
e actually | X (2)],£X(2), R{X(2)},3{X(2)} are surfaces
e for poles | X (z)| — ¢

e for zeros | X (z)| =0



finite duration signals

Finite-Duration Signals
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This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.




infinite duration signals

Infinite-Duration Signals
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This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.



example

x|n] = a"uln| z[n] = —a"u[—n — 1]
X(Z):l—iz_lzzia X(Z):l—iz_lzzia
pole: z=a pole: z=a
zero: z =10 zero: z=20
ROC: |z] > |q ROC: |z] < |g
(convergence outside a circle) (convergence inside a circle)
(causal (right-sided) signal) (anticausal (left-sided) signal)

e two different signals can give the same formula for X (z)

e they will have different ROCs
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first order poles
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This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.



signal and pole examples

Decaying alternating Decaying
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This figure was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.



x[n] = na"un]

az az
X(z) = (1 —az=1)? - (z —a)?
pole: z = a (2nd order pole)
zero: z =20
ROC: |z] > |q

(convergence outside a circle)

(causal (right-sided) signal)

example

x|n] = —na"ul—n — 1]
az "1 az
X — p—

(2) (1—az"1)2 (z2—a)?
pole: z = a (2nd order pole)
zero: z =10
ROC: |z] < |q

(convergence inside a circle)

(anticausal (left-sided) signal)

e two different signals can give the same formula for X (z)

e they will have different ROCs



second order poles
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This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.



example

x|n] = r" cos(won)uln|, >0, 0<wy<2m

(rnejwon + r"e‘jwon) un|
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1 — 7 cos(wg)z™? z(z — 7 cos(wo))
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ROC: {zeC:|z|>|p|}n{zeC:lz|>|p|}={2€C:|z]| >}



complex conjugate poles
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This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.



two-sided exponential

1 1

z[n] = a"uln| —b"u[-n—-1] <+ X(z)= -+ T

1l —az™

ROC: Ja| < |z < [b]

x[n] x[n]
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This figure was taken from Manolakis & Ingle “Applied Digital Signal Processing,”

, Cambridge University Press.



e the ROC of a sum of transforms is the intersection of the ROCs
e must have |a| < |b|, otherwise X (z) does not exist

e sequence is stable if and only if |a| < 1 < |b], then unit circle in ROC



z-transform pairs

Table 3.1 Some common z-transform pairs

Sequence x[n] z-Transform X(z) ROC
1. d[n] 1 All z
1
2. uln zl > 1
) — o
1
3. au[n] PE— lz| > |al
1 —az™
1
4. —d"u[-n—1] —— lz| < lal
l —az™
—1
n —az
5. nauln) 1 —az-1)2 lz| > |a]
—1
az
6. —nau[—n — 1 —_— zl < |a
[—n— 1] ooy 2] < lal
1 — —1
7. (coswgn)uln] (cos wp)z Iz > 1
1 —2(coswg)z~ ! + 772
: (sin wp)z ™!
8. sin wgn)uln zl > 1
(sinwon)uln] I~ 2tcoswg)z—1 1 22 Izl
1 — (rcos wp)z ™!
9.  ("coswon)uln] (reos wo)z 2| > r
1 —2(rcoswg)z— ! + r2z—2
: ~1
10. (7" sinwgn)uln] (sin wp)z 2| > 7

1 —2(rcoswp)z~! + r2z2

This table was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.



z-transform is linear
—
—
zln] = axn] + byln] <+ Z(z) =aX(z)+0Y(2)

ROC, at least ROCx N ROCy



example

2224082 —-22

X&) =2 0800 1708
Y6 = roscom 1> 08
222 —1.82 — 0.2
Z(2) = X(2) +Y(z) = Z’j_ 08?’1 0915, 2] > 0.5
Matlab: roots([1 0.3 -0.40]) = [-0.8, 0.5]
Matlab: roots([1 0.5 -0.24]) = [-0.8, 0.3]
Matlab: roots([1 -0.8 0.15]) = [ 0.3, 0.5]

the ROC of Z(z) is larger than the intersection of the ROCs of X (z) and Y (2)
because of pole-zero cancellation when two rational functions are summed



z-transform of time shift

zln] <+ X(z), ROCy
yln| =xzn —k] & Y(2)=2"%X(2)

e ROCy = ROCx with consideration for z = 0 and z = o©

e this is easy to derive using a single change of variables (m =n — k)

Y(2) = Zy[n]z_” = Zx[n — k]z7" = Zz[m]z_mz_k = 27"X(2)

n m



example

zn]=un] < X)) =14+z'42z2+24-., 0<|7
zn]=uln -1 < 2z'XE@)=z14+2 42+ 0< |7
zn]=un+1 < ZX@)=z'+1+2 422+, 0<|zl <0
zn]=ul-n] & X@)=--+22+22+2+1, |z <0
rn] =u[-(n+1)] < 2Z'XE)=--+2+24+27242 |zl <oo
zn]=ul—(n—-1)] < 27'X(@)=--+22+2'+1+271 0< |zl <0

e sometimes the ROC does not change

e sometimes the ROC changes by removing the point at z =0 or z = o0



z-transform of difference equation

e take z-transforms of both sides of the difference quation using linearity and the
time-shifting property

e now rearrange and define the transfer (system) function

oY) Xaseblket  BR) L Ss e
H(z) X(2) " SN alk k- AC) > hln]

where h|n| is the impulse response



e finite poles are roots pi, k=1,2,--- N of A(z) = ijzoa[k]z_k
e finite zeros are roots 2z, k =1,2,--- , M of B(z) = 224:0 blk]z*
e may also have poles or zeros at z = oo

e counting poles and zeros at oo, a rational function has equal numbers of poles
and zeros

e the transfer function may also be written in factored form exposing the poles and
Zeros

> blk]z " ] =22
H(z) = k=0 _ k=1

Z alk]zk
k=0

e Matlab roots, poly and conv functions



z-transform of convolution

ROC, at least ROCx N ROCy

e this property is easy to derive using one change of variables



example )

determine the output of LTI system described by y[n| = sy[n — 1] + x[n] driven by

x[n] = 10cos(mn/4)u[n] and y|—1] =0 i

1 10(1 — sz~ 1)
H(z) = —5—  X(2)= V2 L
1—=32 1— V22714 272

10(1 — %z_l)

(1= D= V2T 4 27)

. —19  6.787IET  (.78¢I28T

11— 121 i 1 —eim/4z-1 T 1 — e Jm/4x—1

Y(2)=H(2)X(z) =

1\" 0 7O e O
y[n] = (—1.9 (5) + 6.78e728:T /4 | 67861287 6*7”"/4) un

_ <_1.9 G)n + 13.56 cos(mn/4 — 28.70)) uln]

e partial fraction expansion was used (Matlab: residuez)



example (continued)
[r,p,k]l=residuez (10x[1, —1/sqgrt(2)],conv([1l,—1/21,[1, —sgrt(2),1]));
n = [0:20];
vy = —1.9074%(0.5)."n + 13.56xcos (pi*n/4—28.7+pi/180);
plot (n,v, ); hold on;
y = filter(1,[1,—0.5]1,10xcos (pi*n/4));
stem(n,vy, ); hold off;
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-15 | 1 | 1 | 1 | 1 |




exponential modulation

zln] <+ X(z), ROCx
y[n] =a"z[n] < Y(z)=X(a'z), ROCy =|a|ROCx

let p be a pole of X(z): X(p) = ¢
then Y (ap) = X (a"!(ap)) = X(p) — o0, so ap is a pole of Y (2)
the ROC stretches (|a| > 1), shrinks (|a| < 1), or stays the same (|a| = 1)

let @ = 7“0, then pole at p gets rotated to e/“op, but the ROC stays the same



differentiation property

nxln| < —zd)éiz)
proof:
P S anleme = (=) Y ()
—zd)éiz) = Z (nxn])z™"

e the ROC does not change



example

1
a"uln] e 12| > |a|

d 1 az"! 2> Jal
2 = z| > |a
dzl—az=' (1 —az"1)?

na"uln] <+ —



more properties

e complex conjugate

zln] <+ X(z), ROCx
yln| =x"[n] <+ Y(z)=X"(z"), ROCy =ROCx

zln] <+ X(z), ROCx
y[ln] =2[-n] < Y(2)=X(z!'), ROCy =1/ROCx

e if ROCx : 1 < |2z| < 73, then ROCy : % < |z| < 711



more properties

e initial value theorem for causal z|n],

z|0] = lim X(z2)

Z—> 00

e final value theorem for causal x|n],

lim z[n] = lim (1 — 27 1) X (2)

Nn— 00 z—1

assuming the limits exist



you should be able to ...

derive the time shifting property

derive the time-reversal property

derive the conjugation property

derive the convolution property

compute z-transforms of common signals

. and levitate



inverse z-transform

1

/ X(2)z"'dz, C € ROC
c:cCCw

Lecture 5 - The z-Transform.mp4
Resolution: 480x360
Filesize: 176.8 MB
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observe

N
x|n] = Z ckpru[n], distinct py

k=1
al c
X(z) = Z : —1
— 1 —ppz
N N N-1
D k=1 Ck H (1 —pmz™") blk]zk
— N — N 3 CLO — ].

H(l —prz ) Z alk]z "
k=1 k=0

e this is a proper rational function

e given a rational function with distinct poles, we can reverse this procedure to find
z[n|

e use partial fraction expansion (Matlab: residuez)



example

) — 1+2z71 _ 2(z+1)
AR T T =y R CRg Vs

poles at p; = 1 and py = %
zeros at zy = 0 and 2o = —1
two distinct poles gives three different possibilities for the ROC

PFE:
[R,P,K]=residuez([1,1],conv([1,-1],[1,-0.5]));
[R,P,K]=residuez([1,1],poly([1,0.5]));
(residue,pole) pairs = (R=4,P=1) and (R=-3, P=0.5)




example continued

1+ 271 4 —3
X(z) = = -
B R

with two distinct poles p; = 1, py = % there are three possible regions of convergence

1. left-sided sequence, ROC : |2| < 1, z[n] =3 (3)" u[-n — 1] — du[-n — 1]
2. two-sided sequence, ROC : % < |z| < 1, z[n] = -3 (%)" u[n] — 4u[-n — 1]

3. right-sided sequence, ROC: 1 < |z|, x|n] = —3 (%)nu[n] + 4u[n]

z-plane |dm z-plane im z-plane Im

PO |
)([g[._._,"

ROC ROC | ROC




example continued
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none of these sequences are stable because none of the ROCs contain the unit circle



example

x|n] is causal and

B 1+ 271 B A N A*
1 —2"1405272 1—pzl 1—przV

X(z)

zln] = (Ap" + A*p™") u[n] = 2R{ Ap" }u[n]

[R,P,K]l=residuez([1,1],[1,-1,0.5]);
(residue,pole) pairs = (R, P) = (3 — j2,2 + j2) and (R, P) = (

V10 7 560 1

s
A=——c¢ , p=——=¢l1

V2

o] = Y10 (é)ncos (%n— 71.56°) uln]

is this a stable sequence? does the ROC include the unit circle?

N

2| > |p



x[n]

-0.1

0.8

example continued
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inverse z-transform of rational functions

_ 224:0 blk]z—*

X(z) =
) S alk]zk

assume that A(z) has distinct roots (distinct poles)

PFE of X(z) has the form

M—N N A
_ Z —k Z k

first sum (direct term) exists when M > N

then a causal signal x[n] has the simple form

x[n] = i Cidln — k] + Z Arprun]



e but there are N + 1 possible inverses x[n], each corresponding to a different ROC
e at most one of the inverses x[n| is stable

e if a pole on the unit circle, then none of the z[n| are stable



LTI systems

transfer function and impulse response of LTI system

Y alklzh

system is stable if ROC contains the unit circle
system is causal if ROC lies outside the outtermost pole
system is causal and stable if all poles lie inside the unit circle

zeros of H(z) can be anywhere



LTI systems example
Is a causal realization of the system below stable?

1 — 22

H —
() = 70917 06:2 10053

[R,P,K]=residuez([1,0,-1],[1,0.9,0.6,0.05]);
zplane([1,0,-1],[1,0.9,0.6,0.05]);
roots([1,0.9,0.6,0.05])

the last one produces g
0.8r-
~0.4022 + 0.6011i | R
-0.4022 - 0.6011i ol |
~0.0956 , o2l |
abs (roots ([1,0.9,0.6,0.05]) ) ol 0 ,‘o P -S—
this produces = -02f "
0.4}
0.7233 06 B ;
0.7233 oal |
0.0956 B |

-1 -0.5 0 0.5
Real Part



LTI systems example continued

Magnitude (dB)

=20+

-40

1 1 1 1
0 0.2 0.4 0.6 0.8 1

Normalized Frequency ( >x radfsample)

100

50

Phase (degrees)

50

-100

1 | 1 1 1 1 | 1 1
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1
Normalized Frequency ( >z rad/sample)

zplane([1,0,-1],[1,0.9,0.6,0.05]);
freqz([1,0,-1]1,[1,0.9,0.6,0.05]);

Imaginary Part

0.8+

0.6+

0.4

0.2-

02+

-0.4+

06

-0.8+

X
o] %O
X
1 1 1
1 -0.5 0 0.5
Real Part




complex conjugate roots

> blklzh .

— . bro + bi 12_1
H :k—O C k ) )
¥ I

Ko
Z 2| Bg|ry, cos(wgn + 0y)uln]

— k=0

(direct terms) (real distinct poles) (complex conjugate poles)

B B; bro+ by 1271 - "

- —1 + >l: 1~ w0 _1k’1 _ 9 By = ‘Bk|639k7 Pk = rpe’ vk
1 — prz 1 —prz I +ag127" + ag 2z
br.0 = 2|By| cos 0y Qi1 = —27k COS Wy

bk,l = _27“k|Bk:‘ COS(wk — Qk) Qp 2 = 7“]%



symmetries
if x[n] = x*[n| (i.e. x|n] is real), then X (z) = X*(z*) (prove this)
if X(z9) =0, then X(25) =0
zeros off the real axis occur in complex conjugate pairs
ex: z[n] =dn]+dn—-2] + X@)=1+2z2=01—-j2z2"H1+jz71)
x=randn(1,5); roots(x) returns

0.5565 + 0.69211i
0.5565 - 0.69211
-1.3343
-0.6746

as expected, zeros are real or occur in complex conjugate pairs



symmetries

if x[n] = x[—n] (i.e. x[n] is even), then X(2) = X(271) (prove this)

if X(29) =0, then X(2;') =0

zeros occur in reciprocal pairs

example:

X (2)

z[n] = {

35 31
=22 - =

6 3

=2 (1-227") (

1. —35731’ —35’1
6 3 6
35 4 —2
6,2 + z
l—lz_l (1—32_1)
2

1 _
1 — -2
3

)



symmetries

8

if h[n] = h|—n| = h*[n] = h*|—n] (i.e. real and even), =
then H(zo) = H(2%) = H(zy ') = H(z;*) =0 “t

oL

in general zeros occur in 4-tuples (zo, 2§, zo_l

y 20 ) il
unit circle zeros appear in conjugate pairs (2o, 2¢) 2

. . . 1
real zeros occur in reciprocal pairs (2o, 2, )

zeros at =1 can appear alone

o

i N
= -0.8320 0.8F- o
2.2262 0.6-
-3.6809 0.4"
5.15568 5 02"
-5.7986 i o 1o
6.7314 £ 02
-5.7986 04l
5.1558 o6l
-3.6809 oal o |
2.2262 4l g
-0.8320 y oE .

0.5

Real Part

1.5




one-sided z-transform
e z-transform of x|n|u[n]

e x[n] for n < 0 is ignored

Xt(2) = Z x[n]z™" ROC=exterior of circle
n=0

e most z-transform properties carry over to the one-sided z-transform except for
the time-shifting property

zln] < XT1(2)

T
8
=
_|_
N
L
>
i
&

xn — 1

zn—2] < z[-2]+z[-1]zt+ 272X T(2)

rln—k| Z r[—m]z Pt £ 2P X (2)



zero-input and zero-state response of LTI system

e difference equation with non-zero initial condition

yln| = ayln — 1]+ bzn], n=0,  y[-1]#0

e take one-sided z-transform of both sides

YT (2) =ay[-1] + 2z7'Y T (2) + bXT(2)

e solve for Y1 (z) yields

oy ayl=1] b
Y7z) 11— az—£+l —az~
zeronput zero\—gtate

X (2)




zero-input and zero-state response of LTI system

consider a step input

then the output is

_ay[-1] b

Y7(z) = 1—az"1 i (1—az=H)(1—271)
_ay|—1] b/(1—a) ab/(1—a)
_1—az—1+1—z—1 1 —qz}

b

— 1 n+1
yin] =glla™” + 37—,
zero-input ~\~
zero-state




