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z-transform

X(z) =

∞∑
n=−∞

x[n]z−n

ROC = {z ∈ C : |X(z)| <∞}

• need to specify both algebraic formula for X(z) and the ROC

• the ROC never contains poles

• zeros may lie in the ROC

• ROC is always circular
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z-transform is a “surface”

This figure was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.

• actually |X(z)|,∠X(z),<{X(z)},={X(z)} are surfaces

• for poles |X(z)| → ∞

• for zeros |X(z)| = 0
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finite duration signals

This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.
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infinite duration signals

This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.
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x[n] = anu[n]

X(z) =
1

1− az−1
=

z

z − a
pole: z = a

zero: z = 0

ROC: |z| > |a|
(convergence outside a circle)

(causal (right-sided) signal)

x[n] = −anu[−n− 1]

X(z) =
1

1− az−1
=

z

z − a
pole: z = a

zero: z = 0

ROC: |z| < |a|
(convergence inside a circle)

(anticausal (left-sided) signal)

• two different signals can give the same formula for X(z)

• they will have different ROCs

example
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first order poles

This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.
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signal and pole examples

This figure was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.
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x[n] = nanu[n]

X(z) =
az−1

(1− az−1)2
=

az

(z − a)2

pole: z = a (2nd order pole)

zero: z = 0

ROC: |z| > |a|
(convergence outside a circle)

(causal (right-sided) signal)

x[n] = −nanu[−n− 1]

X(z) =
az−1

(1− az−1)2
=

az

(z − a)2

pole: z = a (2nd order pole)

zero: z = 0

ROC: |z| < |a|
(convergence inside a circle)

(anticausal (left-sided) signal)

• two different signals can give the same formula for X(z)

• they will have different ROCs

example
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second order poles

This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.
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example

x[n] = rn cos(ω0n)u[n], r > 0, 0 ≤ ω0 < 2π

=
1

2

(
rnejω0n + rne−jω0n

)
u[n]

=
1

2

(
(rejω0)n + (re−jω0)n

)
u[n]

=
1

2
(pn + (p∗)n)u[n], p = rejω0

X(z) =
1

2

(
1

1− pz−1

)
+

1

2

(
1

1− p∗z−1

)
=

1− r cos(ω0)z
−1

(1− pz−1)(1− p∗z−1)
=
z(z − r cos(ω0))

(z − p)(z − p∗)

ROC : {z ∈ C : |z| > |p|} ∩ {z ∈ C : |z| > |p|} = {z ∈ C : |z| > r}
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complex conjugate poles

This figure was taken from Proakis & Manolakis “Digital Signal Processing: Principles, Algorithms and Applications,”, 3rd edition, Prentice Hall.
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two-sided exponential

x[n] = anu[n]− bnu[−n− 1] ↔ X(z) =
1

1− az−1
+

1

1− bz−1

ROC : |a| < |z| < |b|

This figure was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.
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• the ROC of a sum of transforms is the intersection of the ROCs

• must have |a| < |b|, otherwise X(z) does not exist

• sequence is stable if and only if |a| < 1 < |b|, then unit circle in ROC
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z-transform pairs

This table was taken from Manolakis & Ingle “Applied Digital Signal Processing,”, Cambridge University Press.
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z-transform is linear

x[n] ↔ X(z)

y[n] ↔ y(z)

z[n] = ax[n] + by[n] ↔ Z(z) = aX(z) + bY (z)

ROCZ at least ROCX ∩ ROCY
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example

X(z) =
2z2 + 0.8z − 2.2

z2 + 0.3z − 0.4
, |z| > 0.8

Y (z) =
−0.4z + 1

z2 + 0.5z − 0.24
, |z| > 0.8

Z(z) = X(z) + Y (z) =
2z2 − 1.8z − 0.2

z2 − 0.8z + 0.15
, |z| > 0.5

• Matlab: roots([1 0.3 -0.40]) = [-0.8, 0.5]

• Matlab: roots([1 0.5 -0.24]) = [-0.8, 0.3]

• Matlab: roots([1 -0.8 0.15]) = [ 0.3, 0.5]

• the ROC of Z(z) is larger than the intersection of the ROCs of X(z) and Y (z)
because of pole-zero cancellation when two rational functions are summed
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z-transform of time shift

x[n] ↔ X(z), ROCZ

y[n] = x[n− k] ↔ Y (z) = z−kX(z)

• ROCY = ROCX with consideration for z = 0 and z =∞

• this is easy to derive using a single change of variables (m = n− k)

Y (z) =
∑
n

y[n]z−n =
∑
n

x[n− k]z−n =
∑
m

z[m]z−mz−k = z−kX(z)
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example

x[n] = u[n] ↔ X(z) = 1 + z−1 + z−2 + z−3 + · · · , 0 < |z|

x[n] = u[n− 1] ↔ z−1X(z) = z−1 + z−2 + z−3 + z−4 + · · · , 0 < |z|

x[n] = u[n+ 1] ↔ z1X(z) = z1 + 1 + z−1 + z−2 + · · · , 0 < |z| <∞

x[n] = u[−n] ↔ X(z) = · · ·+ z3 + z2 + z + 1, |z| <∞

x[n] = u[−(n+ 1)] ↔ z1X(z) = · · ·+ z4 + z3 + z2 + z, |z| <∞

x[n] = u[−(n− 1)] ↔ z−1X(z) = · · ·+ z2 + z1 + 1 + z−1, 0 < |z| <∞

• sometimes the ROC does not change

• sometimes the ROC changes by removing the point at z = 0 or z =∞
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z-transform of difference equation

• take z-transforms of both sides of the difference quation using linearity and the
time-shifting property

N∑
k=0

a[k]y[n− k] =
M∑
k=0

b[k]x[n− k]

N∑
k=0

a[k]z−kY (z) =

M∑
k=0

b[k]z−kX(z)

(
N∑
k=0

a[k]z−k

)
Y (z) =

(
M∑
k=0

b[k]z−k

)
X(z)

• now rearrange and define the transfer (system) function

H(z) =
Y (z)

X(z)
=

∑M
k=0 b[k]z

−k∑N
k=0 a[k]z

−k
=
B(z)

A(z)
=

∞∑
n=−∞

h[n]z−n,

where h[n] is the impulse response
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• finite poles are roots pk, k = 1, 2, · · · , N of A(z) =
∑N
k=0 a[k]z

−k

• finite zeros are roots zk, k = 1, 2, · · · ,M of B(z) =
∑M
k=0 b[k]z

−k

• may also have poles or zeros at z =∞

• counting poles and zeros at ∞, a rational function has equal numbers of poles
and zeros

• the transfer function may also be written in factored form exposing the poles and
zeros

H(z) =

M∑
k=0

b[k]z−k

N∑
k=0

a[k]z−k

=
b[0]

a[0]
·

M∏
k=1

(1− zkz−1)

N∏
k=1

(1− pkz−1)

• Matlab roots, poly and conv functions
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z-transform of convolution

x[n] ↔ X(z)

y[n] ↔ y(z)

z[n] = x[n] ∗ y[n] ↔ Z(z) = X(z) · Y (z)

ROCZ at least ROCX ∩ ROCY

• this property is easy to derive using one change of variables
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example
determine the output of LTI system described by y[n] = 1

2y[n− 1] + x[n] driven by
x[n] = 10 cos(πn/4)u[n] and y[−1] = 0

H(z) =
1

1− 1
2z
−1, X(z) =

10(1− 1√
2
z−1)

1−
√
2z−1 + z−2

Y (z) = H(z)X(z) =
10(1− 1√

2
z−1)

(1− 1
2z
−1)(1−

√
2z−1 + z−2)

=
−1.9

1− 1
2z
−1 +

6.78e−j28.7
◦

1− ejπ/4z−1
+

6.78ej28.7
◦

1− e−jπ/4z−1

y[n] =

(
−1.9

(
1

2

)n
+ 6.78ej28.7

◦
ejπn/4 + 6.78ej28.7

◦
ejπn/4

)
u[n]

=

(
−1.9

(
1

2

)n
+ 13.56 cos(πn/4− 28.7◦)

)
u[n]

• partial fraction expansion was used (Matlab: residuez)

22



example (continued)
[r,p,k]=residuez(10*[1,−1/sqrt(2)],conv([1,−1/2],[1,−sqrt(2),1]));
n = [0:20];

y = −1.9074*(0.5).ˆn + 13.56*cos(pi*n/4−28.7*pi/180);
plot(n,y,'b'); hold on;

y = filter(1,[1,−0.5],10*cos(pi*n/4));
stem(n,y,'r'); hold off;
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exponential modulation

x[n] ↔ X(z), ROCX

y[n] = anx[n] ↔ Y (z) = X(a−1z), ROCY = |a|ROCX

• let p be a pole of X(z): X(p)→∞

• then Y (ap) = X(a−1(ap)) = X(p)→∞, so ap is a pole of Y (z)

• the ROC stretches (|a| > 1), shrinks (|a| < 1), or stays the same (|a| = 1)

• let a = ejω0, then pole at p gets rotated to ejω0p, but the ROC stays the same
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differentiation property

x[n] ↔ X(z)

nx[n] ↔ −zdX(z)

dz

proof:

dX(z)

dz
=

∞∑
n=−∞

x[n](−n)z−n−1 = (−z−1)
∞∑

n=−∞
(nx[n])z−n

−zdX(z)

dz
=

∞∑
n=−∞

(nx[n])z−n

• the ROC does not change
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example

anu[n] ↔ 1

1− az−1
, |z| > |a|

nanu[n] ↔ −z d
dz

1

1− az−1
=

az−1

(1− az−1)2
, |z| > |a|
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more properties

• complex conjugate

x[n] ↔ X(z), ROCX

y[n] = x∗[n] ↔ Y (z) = X∗(z∗), ROCY = ROCX

• time-reversal

x[n] ↔ X(z), ROCX

y[n] = x[−n] ↔ Y (z) = X(z−1), ROCY = 1/ROCX

• if ROCX : r1 < |z| < r2, then ROCY : 1
r2
< |z| < 1

r1
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more properties

• initial value theorem for causal x[n],

x[0] = lim
z→∞

X(z)

• final value theorem for causal x[n],

lim
n→∞

x[n] = lim
z→1

(1− z−1)X(z)

assuming the limits exist
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you should be able to ...

• derive the time shifting property

• derive the time-reversal property

• derive the conjugation property

• derive the convolution property

• compute z-transforms of common signals

• ... and levitate
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inverse z-transform

x[n] =
1

2πj

∫
C:CCW

X(z)zn−1dz, C ∈ ROC
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observe

x[n] =

N∑
k=1

ckp
n
ku[n], distinct pk

X(z) =

N∑
k=1

ck
1− pkz−1

=

∑N
k=1 ck

N∏
m=1,m6=k

(1− pmz−1)

N∏
k=1

(1− pkz−1)

=

N−1∑
k=0

b[k]z−k

N∑
k=0

a[k]z−k

, a0 = 1

• this is a proper rational function

• given a rational function with distinct poles, we can reverse this procedure to find
x[n]

• use partial fraction expansion (Matlab: residuez)

31



example

X(z) =
1 + z−1

(1− z−1)(1− 1
2z
−1)

=
z(z + 1)

(z − 1)(z − 1
2)

• poles at p1 = 1 and p2 =
1
2

• zeros at z1 = 0 and z2 = −1

• two distinct poles gives three different possibilities for the ROC

• PFE:
[R,P,K]=residuez([1,1],conv([1,-1],[1,-0.5]));

[R,P,K]=residuez([1,1],poly([1,0.5]));

(residue,pole) pairs = (R=4,P=1) and (R=-3, P=0.5)

X(z) =
4

1− z−1
+

−3
1− 1

2z
−1
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example continued

X(z) =
1 + z−1

(1− z−1)(1− 1
2z
−1)

=
4

1− z−1
+

−3
1− 1

2z
−1

with two distinct poles p1 = 1, p2 =
1
2, there are three possible regions of convergence

1. left-sided sequence, ROC : |z| < 1
2, x[n] = 3

(
1
2

)n
u[−n− 1]− 4u[−n− 1]

2. two-sided sequence, ROC : 1
2 < |z| < 1, x[n] = −3

(
1
2

)n
u[n]− 4u[−n− 1]

3. right-sided sequence, ROC : 1 < |z|, x[n] = −3
(
1
2

)n
u[n] + 4u[n]
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example continued

none of these sequences are stable because none of the ROCs contain the unit circle
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example

x[n] is causal and

X(z) =
1 + z−1

1− z−1 + 0.5z−2
=

A

1− pz−1
+

A∗

1− p∗z−1
, |z| > |p|

x[n] = (Apn +A∗p∗n)u[n] = 2<{Apn}u[n]

[R,P,K]=residuez([1,1],[1,-1,0.5]);

(residue,pole) pairs = (R,P ) = (12 − j
3
2,

1
2 + j12) and (R,P ) = (12 + j32,

1
2 − j

1
2)

A =

√
10

2
e−j71.56

◦
, p =

1√
2
ej

π
4

x[n] =

√
10

2

(
1√
2

)n
cos
(π
4
n− 71.56◦

)
u[n]

is this a stable sequence? does the ROC include the unit circle?
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example continued

x[n] =

√
10

2

(
1√
2

)n
cos
(π
4
n− 71.56◦

)
u[n]
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inverse z-transform of rational functions

X(z) =

∑M
k=0 b[k]z

−k∑N
k=0 a[k]z

−k

• assume that A(z) has distinct roots (distinct poles)

• PFE of X(z) has the form

X(z) =

M−N∑
k=0

Ckz
−k +

N∑
k=1

Ak
1− pkz−1

• first sum (direct term) exists when M ≥ N

• then a causal signal x[n] has the simple form

x[n] =

M−N∑
k=0

Ckδ[n− k] +
N∑
k=1

Akp
n
ku[n]

37



• but there are N +1 possible inverses x[n], each corresponding to a different ROC

• at most one of the inverses x[n] is stable

• if a pole on the unit circle, then none of the x[n] are stable
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LTI systems

• transfer function and impulse response of LTI system

H(z) =

∑M
k=0 b[k]z

−k∑N
k=0 a[k]z

−k
=

∞∑
n=−∞

h[n]z−n, ROCH

• system is stable if ROC contains the unit circle

• system is causal if ROC lies outside the outtermost pole

• system is causal and stable if all poles lie inside the unit circle

• zeros of H(z) can be anywhere
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LTI systems example

is a causal realization of the system below stable?

H(z) =
1− z−2

1 + 0.9z−1 + 0.6z−2 + 0.05z−3

[R,P,K]=residuez([1,0,-1],[1,0.9,0.6,0.05]);

zplane([1,0,-1],[1,0.9,0.6,0.05]);

roots([1,0.9,0.6,0.05])

the last one produces

-0.4022 + 0.6011i

-0.4022 - 0.6011i

-0.0956

abs(roots([1,0.9,0.6,0.05]))

this produces

0.7233

0.7233

0.0956
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LTI systems example continued

zplane([1,0,-1],[1,0.9,0.6,0.05]);

freqz([1,0,-1],[1,0.9,0.6,0.05]);
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complex conjugate roots

H(z) =

M∑
k=0

b[k]z−k

N∑
k=0

a[k]z−k
=

M−N∑
k=0

Ckz
−k +

K1∑
k=1

Ak
1− pkz−1

+

K2∑
k=1

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2

M−N∑
k=0

Ckδ[n− k]

(direct terms)

K1∑
k=0

Akp
n
ku[n]

(real distinct poles)

K2∑
k=0

2|Bk|rnk cos(ωkn+ θk)u[n]

(complex conjugate poles)

Bk
1− pkz−1

+
B∗k

1− p∗kz−1
=

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
, Bk = |Bk|ejθk, pk = rke

jωk

bk,0 = 2|Bk| cos θk
bk,1 = −2rk|Bk| cos(ωk − θk)

ak,1 = −2rk cosωk
ak,2 = r2k
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symmetries

• if x[n] = x∗[n] (i.e. x[n] is real), then X(z) = X∗(z∗) (prove this)

• if X(z0) = 0, then X(z∗0) = 0

• zeros off the real axis occur in complex conjugate pairs

• ex: x[n] = δ[n] + δ[n− 2] ↔ X(z) = 1 + z−2 = (1− jz−1)(1 + jz−1)

• x=randn(1,5); roots(x) returns

0.5565 + 0.6921i

0.5565 - 0.6921i

-1.3343

-0.6746

as expected, zeros are real or occur in complex conjugate pairs
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symmetries

• if x[n] = x[−n] (i.e. x[n] is even), then X(z) = X(z−1) (prove this)

• if X(z0) = 0, then X(z−10 ) = 0

• zeros occur in reciprocal pairs

• example:

x[n] =

{
1,
−35
6
,
31

3
,
−35
6
, 1

}
X(z) = z2 − 35

6
z1 +

31

3
− 35

6
z−1 + z−2

= z2
(
1− 2z−1

)(
1− 1

2
z−1
)(

1− 3z−1
)(

1− 1

3
z−1
)
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h = -0.8320

2.2262

-3.6809

5.1558

-5.7986

6.7314

-5.7986

5.1558

-3.6809

2.2262

-0.8320

symmetries

• if h[n] = h[−n] = h∗[n] = h∗[−n] (i.e. real and even),
then H(z0) = H(z∗0) = H(z−10 ) = H(z−∗0 ) = 0

• in general zeros occur in 4-tuples (z0, z
∗
0, z
−1
0 , z−∗0 )

• unit circle zeros appear in conjugate pairs (z0, z
∗
0)

• real zeros occur in reciprocal pairs (z0, z
−1
0 )

• zeros at ±1 can appear alone
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one-sided z-transform

• z-transform of x[n]u[n]

• x[n] for n < 0 is ignored

X+(z) =

∞∑
n=0

x[n]z−n ROC=exterior of circle

• most z-transform properties carry over to the one-sided z-transform except for
the time-shifting property

x[n] ↔ X+(z)

x[n− 1] ↔ x[−1] + z−1X+(z)

x[n− 2] ↔ x[−2] + x[−1]z−1 + z−2X+(z)

x[n− k] ↔
k∑

m=1

x[−m]z−k+m + z−kX+(z)
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zero-input and zero-state response of LTI system

• difference equation with non-zero initial condition

y[n] = ay[n− 1] + bx[n], n ≥ 0, y[−1] 6= 0

• take one-sided z-transform of both sides

Y +(z) = ay[−1] + z−1Y +(z) + bX+(z)

• solve for Y +(z) yields

Y +(z) =
ay[−1]
1− az−1︸ ︷︷ ︸

zero-input

+
b

1− az−1
X+(z)︸ ︷︷ ︸

zero-state
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zero-input and zero-state response of LTI system

consider a step input

x[n] = u[n] ↔ X+(z) =
1

1− z−1

then the output is

Y +(z) =
ay[−1]
1− az−1

+
b

(1− az−1)(1− z−1)

=
ay[−1]
1− az−1

+
b/(1− a)
1− z−1

− ab/(1− a)
1− az−1

y[n] = y[−1]an+1︸ ︷︷ ︸
zero-input

+
b

1− a
(
1− an+1

)︸ ︷︷ ︸
zero-state

, n ≥ 0
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