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main points

• DT LTI systems model real physical systems

• behavior of real system predicted by DT LTI model

• compute the output of DT IIR LTI systems (difference equation)

• compute the output of DT FIR LTI systems (convolution)

• explain the difference between convolution and filtering

• list merits of DT LTI system relative to CT LTI system models
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differential equations and difference equations

linear constant coefficient differential equation

N∑
i=0

ai
diy(t)

dti
=

M∑
i=0

bi
dix(t)

dti

linear constant coefficient difference equation

N∑
i=0

aiy[n− i] =

M∑
i=0

bix[n− i] (autoregressive moving-average, IIR)

N∑
i=0

aiy[n− i] = x[n] (autoregressive, IIR)

y[n] =

M∑
i=0

bix[n− i] (moving-average, FIR, convolution)
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circuit elements

resistor

R

+

−

v(t)

i(t)

v(t) = Ri(t)

i(t) =
v(t)

R

Impedance: R

capacitor

C

+

−
v(t)

i(t)

v(t) =
1

C

∫ t

−∞
i(τ)dτ

i(t) = C
dv(t)

dt

Impedance:
1

sC

inductor

L

+

−

v(t)

i(t)

v(t) = L
di(t)

dt

i(t) =
1

L

∫ t

−∞
v(τ)dτ

Impedance: sL
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circuit laws

Kirchoff’s voltage law (KVL)

+−v1

+ −v2
+

−
v3

Sum of voltage drops
around a loop is zero.

−v1 + v2 + v3 = 0

Kirchoff’s current law (KCL)

i1

i3
i2

i4

Sum of currents entering
a node is zero.

i1 + i2 + i3 + i+ 4 = 0
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series RLC circuit

+−x(t)

R i(t) L

C

+

−
y(t)

Input: voltage source x(t)
Output: voltage across capacitor y(t)

Apply KVL:

−x(t) +Ri(t) + L
di(t)

dt
+ y(t) = 0

Substitute i(t) = Cdy(t)/dt and rearrange

LC
d2y(t)

dt2
+RC

dy(t)

dt
+ y(t) = x(t)
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series RLC circuit

+−x(t)

R i(t) L

C

+

−
y(t)

Input: voltage source x(t)
Output: voltage across capacitor y(t)

LC
d2y(t)

dt2
+RC

dy(t)

dt
+ y(t) = x(t)

linear constant coefficient differential equation (LCCDE)

• The circuit solves the differential equation.

• The differential equation models the circuit.
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discretization

LCCDE solved numerically by converting to difference equations

Example:
dy(t)

dt
+ ay(t) = bx(t)

Choose T > 0 and evaluate LCCDE at t = nT (sample points)

dy(nT )

dt
+ ay(nT ) = bx(nT ), for n = 0, 1, 2, · · ·

For small T > 0 approximate the derivative as

dy(t)

dt
= lim
T→0

y(t+ T )− y(t)

T
≈ y(t+ T )− y(t)

T
(Euler’s approx.)

Then letting x[n] = x(nT ) and y[n] = y(nT ) leads to

y[n+ 1]− y[n]

T
+ ay[n] = bx[n]

n→n−1−→ y[n] + (aT − 1)y[n− 1] = bTx[n− 1]
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differential and difference equations

differential equation

N∑
i=0

ai
diy(t)

dti
=

M∑
i=0

bi
dix(t)

dti

• analog circuits

• physical systems

• waves

difference equation

N∑
i=0

aiy[n− i] =

M∑
i=0

bix[n− i]

• stock market

• e-mail traffic

• social networks

Physical systems solve differential/difference equations.

Differential/difference equations model physical systems.
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transforms

continuous time

Laplace transform:

X(s) =

∫ ∞
−∞

x(t)e−stdt

region of convergence is a vertical
strip

ROC
σ

jΩ

s = σ + jΩ

s = jΩ

discrete time

z-transform:

X(z) =

∞∑
n=−∞

x[n]z−n

region of convergence is an annular
region

|z| = 1

ROC

<{z}

={z}

z = rejω

t = nT

z = esT

ω = ΩT
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system functions and solving equations

continuous time

Laplace transform derivative prop.:

dkx(t)

dtk
←→ skX(s)

Laplace transform solution:

N∑
i=0

ai
diy(t)

dti
=

M∑
i=0

bi
dix(t)

dti

N∑
i=0

ais
iY (s) =

M∑
i=0

bis
iX(s)

Y (s) = H(s)X(s) = P.F.E

H(s) =

∑M
i=0 bis

i∑N
i=0 ais

i

discrete time

z-transform delay property:

x[n− k]←→ z−kX(z)

z-transform solution:

N∑
i=0

aiy[n− i] =

M∑
i=0

bix[n− i]

N∑
i=0

aiz
−iY (z) =

M∑
i=0

biz
−iX(z)

Y (z) = H(z)X(z) = P.F.E

H(z) =

∑M
i=0 biz

−i∑N
i=0 aiz

−i
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discrete-time linear time-invariant (LTI) systems

x[n] H(z) y[n]

most general DT LTI system model is the difference equation

N∑
i=0

aiy[n− i] =

M∑
i=0

bix[n− i]

assume a0 = 1 and solve for y[n]

y[n] =

M∑
i=0

bix[n− i]−
N∑
i=1

aiy[n− i]

compute output y[n], n ≥ 0 recursively given initial conditions

x[−1], x[−2], · · · , x[−M ], y[−1], y[−2], · · · , y[−N ]
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impulse functions and properties

Dirac delta function

t

δ(t)

0

δ(t) =

{
∞, t = 0

0, t 6= 0∫ ∞
−∞

δ(τ)dτ = 1∫ ∞
−∞

x(τ)δ(t− τ)dτ = x(t)

Kronecker delta function

n

δ[n]1

0−1−2 1 2

δ[n] =

{
1, n = 0

0, n 6= 0

∞∑
k=−∞

δ[k] = 1

∞∑
k=−∞

x[k]δ[n− k] = x[n]
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impulse response of LTI systems

δ[n] H(z) h[n] (impulse response)

δ[n− k] H(z) h[n− k] (time invariance)

aδ[n] + bδ[n− k] H(z) ah[n] + bh[n− k] (linearity)

represent arbitrary input x[n] as linear combination of weighted Kronecker deltas

x[n] =

∞∑
k=−∞

x[k]δ[n− k]

use linearity and time-invariance properties to derive convolution formula

x[n] =
∑∞
k=−∞ x[k]δ[n− k] H(z) y[n] =

∑∞
k=−∞ x[k]h[n− k]

each LTI system is characterized by its impulse response

13



impulse response

each LTI system is characterized by its impulse response h[n]

given input x[n] and impulse response h[n], the output y[n] may be computed using
the convolution sum formula

y[n] = h[n] ∗ x[n] =

∞∑
i=−∞

x[i]h[n− i] =

∞∑
i=−∞

h[i]x[n− i]

for causal LTI systems

h[n] = 0 for n < 0

for (bounded-input, bounded-output) stable LTI systems

∞∑
n=−∞

|h[n]| <∞
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impulse response

frequency response function

H(f) =

∞∑
n=∞

h[n]e−j2πfn (discrete-time Fourier transform, DTFT)

transfer function

H(z) =

∞∑
n=∞

h[n]z−n (z-transform)
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length classes of LTI systems

when the support of h[n] is [0,∞):

• the system has “infinite impulse response” (IIR)

• compute the output recursively via the difference equation

y[n] =

M∑
i=0

bix[n− i]−
N∑
i=1

aiy[n− i] (IIR)

when the support of h[n] is [0,M ] where M <∞:

• the system is “finite impulse response” (FIR)

• compute output via the difference equation (convolution)

y[n] =

M∑
i=0

h[i]x[n− i] =

n∑
i=n−M

x[i]h[n− i] (FIR)

where h[i] = bi
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terminology: convolution vs. filtering

convolution (“block” input, “block” output)

• given x[n], n = 0, 1, · · · , L and h[n], n = 0, 1, · · · ,M , compute y[n], n =
0, 1, · · · , L+M

• given x[n], n = 0, 1, 2, · · · and h[n], n = 0, 1, 2, · · · , derive analytical expression
for y[n], n = 0, 1, 2, · · ·

filtering

• apply filter to semi-infinite data stream

• samples arrive one at a time or a few at a time

• compute filter output one sample at a time or a few at a time
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computer assignments

FIR case

• linear shift data buffer (not efficient)

• circular data buffer (efficient)

• DFT-based convolution (very efficient)

• inner product (sequential) vs. linear combination (parallel)

• multi-rate (up and down sampling)

• special structures (e.g. CIC)

• applications: audio filtering, filter banks, global positioning, pulse compression
(radar), etc.

• FIR filter design

• (need to be expert in filter design, implementation, and use)
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computer assignments

IIR case

• realizations

• applications: notch, bandpass, etc.

• IIR filter design

• (need to be expert in filter design, implementation, and use)

signal analysis

• use FFT to implement DFT efficiently

• analyze signals

• analyze systems

• (need to be expert in the use of the FFT)
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DSP

continuous time

• CT-LTI system is a circuit

• circuit is difficult to modify

• components are inexpensive

• need lots of components to
experiment with changes

• less flexible

• no sampling needed

discrete time

• DT-LTI system is a C program

• software is easy to modify

• development kits can be
expensive

• only need one part (DSP +
Codec) to experiment

• flexibility to implement arbitrary
functions

• ADC and DAC converters
necessary
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