

ECE 3640 - Discrete-Time Signals and Systems

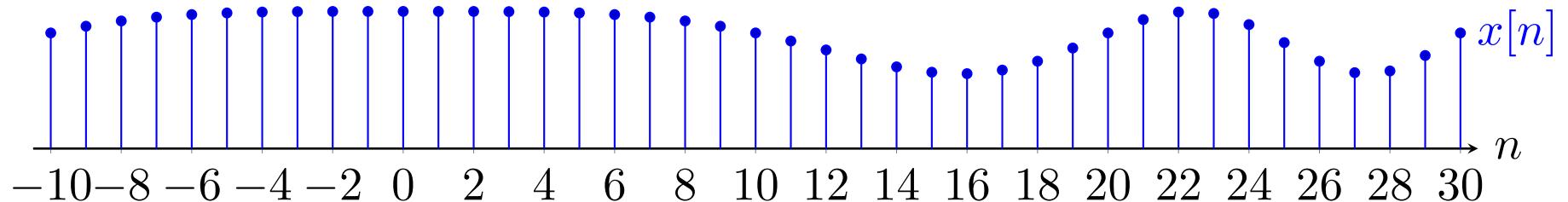
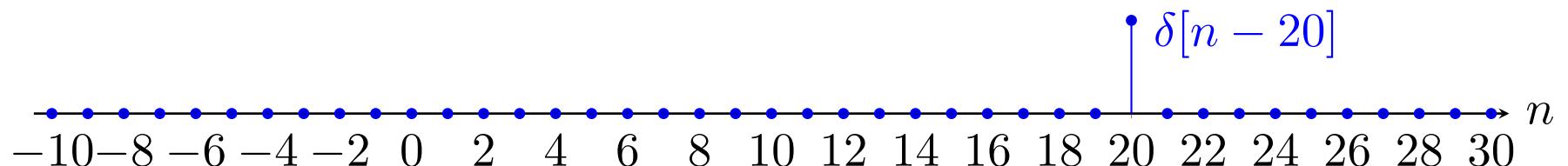
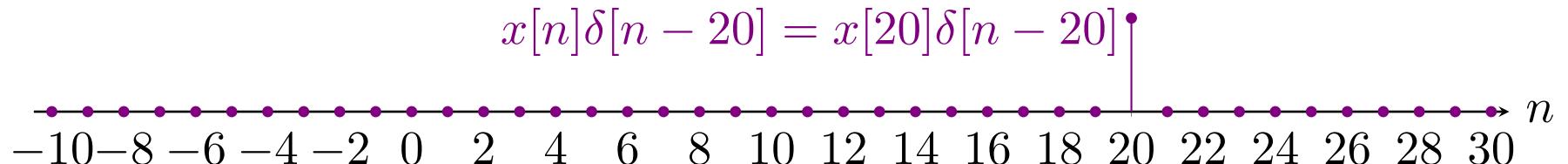
Discrete-Time LTI Systems: Impulse Response

Jake Gunther

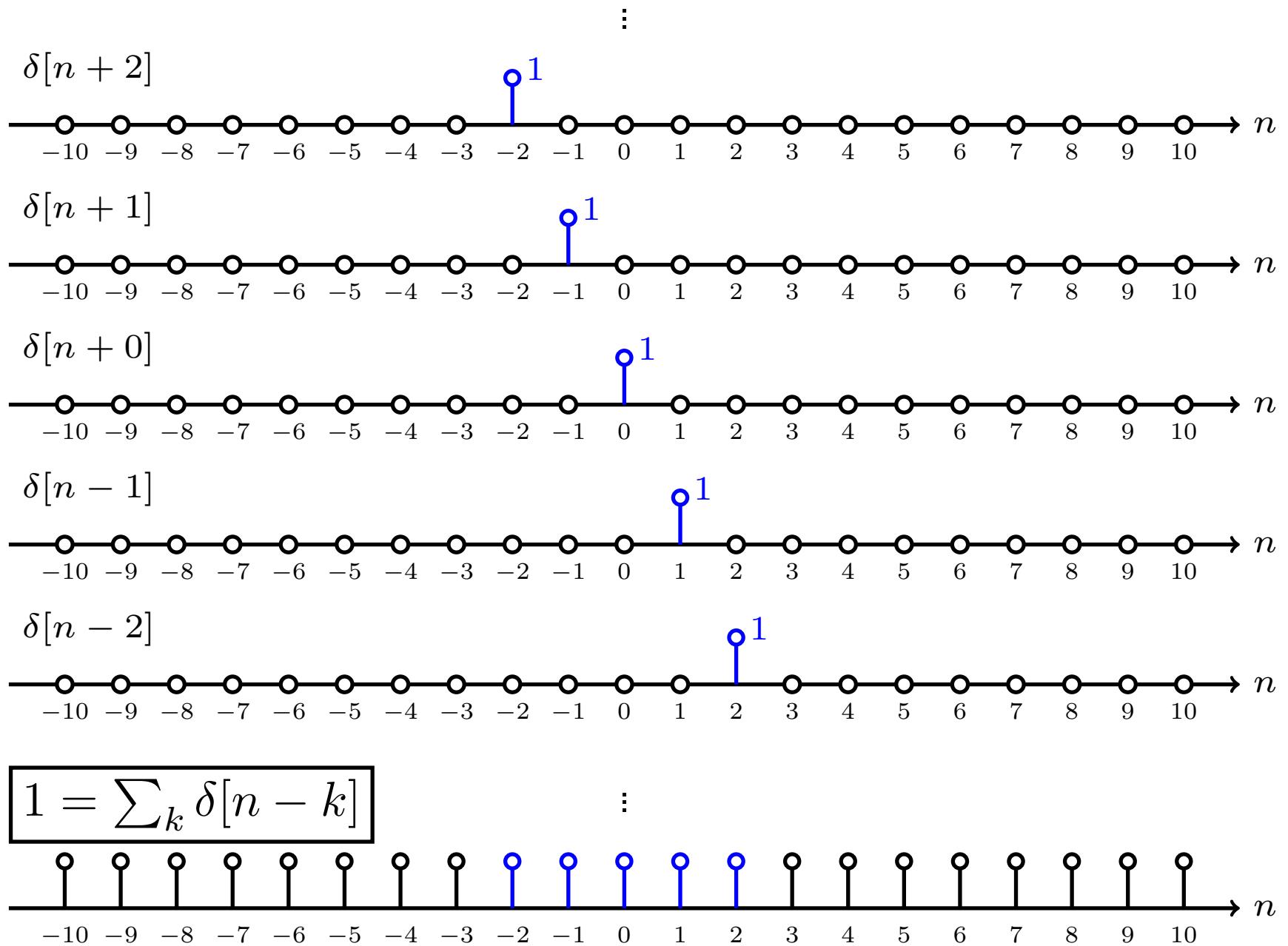
Department of Electrical & Computer Engineering

sifting property of Kronecker delta

$$x[n]\delta[n - k] = x[k]\delta[n - k] \quad \text{for all } n$$



representing a constant signal



representation using Kronecker delta

Note that:

$$1 = \sum_k \delta[n - k]$$

Now multiply signal $x[n]$ by 1 and then sift:

$$x[n] = x[n] \cdot 1 = x[n] \underbrace{\left(\sum_k \delta[n - k] \right)}_1 = \sum_k x[n] \delta[n - k] = \sum_k x[k] \delta[n - k]$$

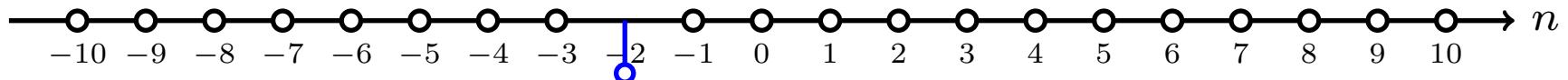
We have:

$$x[n] = \sum_k x[k] \delta[n - k] = x[n] * \delta[n]$$

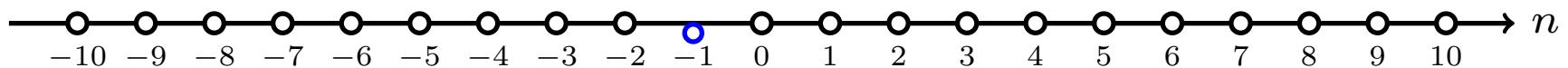
representation using Kronecker delta

⋮

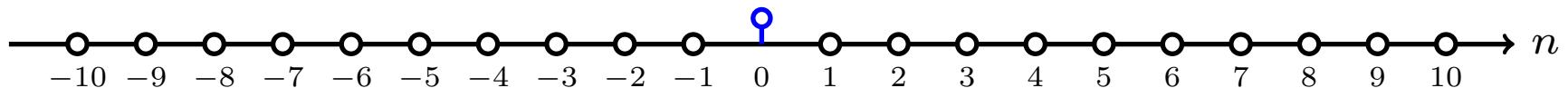
$$x[n]\delta[n+2] = x[-2]\delta[n+2]$$



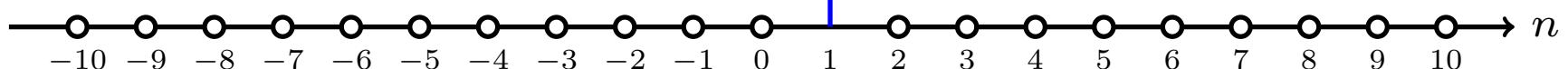
$$x[n]\delta[n+1] = x[-1]\delta[n+1]$$



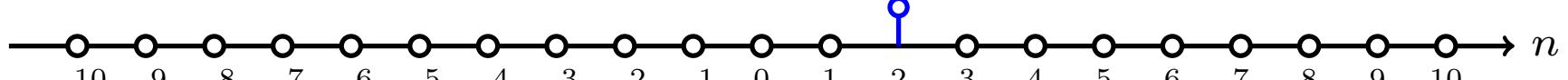
$$x[n]\delta[n] = x[0]\delta[n]$$



$$x[n]\delta[n-1] = x[1]\delta[n-1]$$

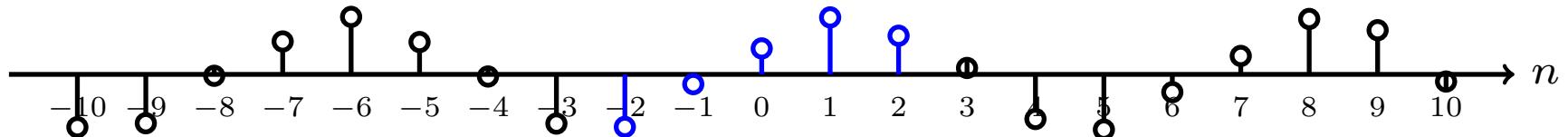


$$x[n]\delta[n-2] = x[2]\delta[n-2]$$

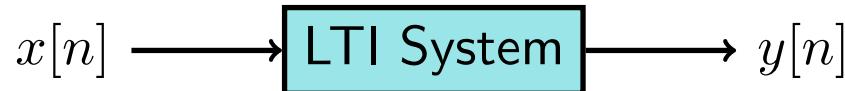
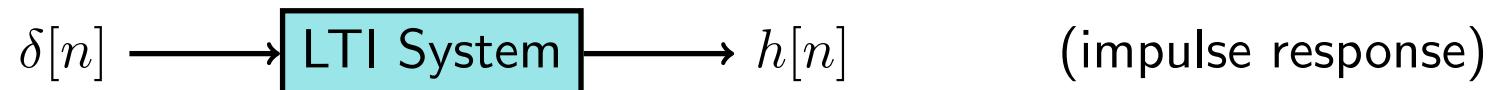
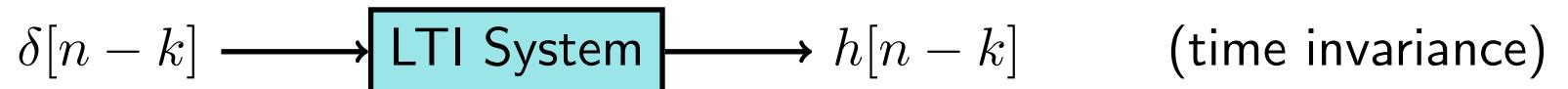


⋮

$$x[n] = \sum_k x[k]\delta[n-k] = x[n] * \delta[n]$$



impulse response of LTI systems



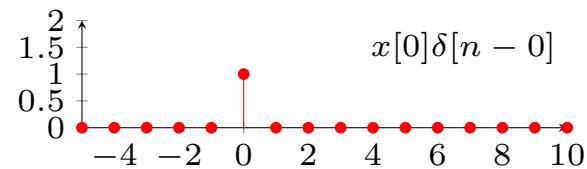
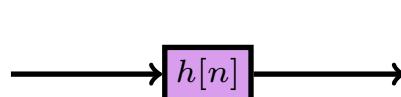
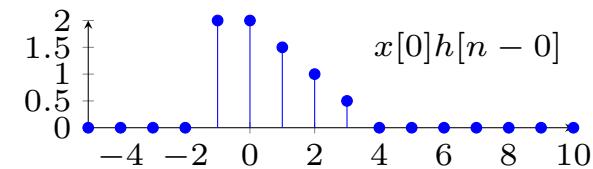
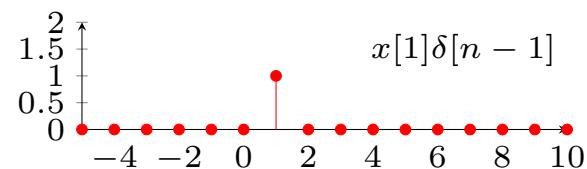
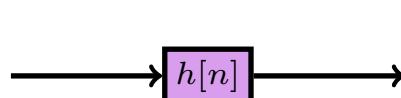
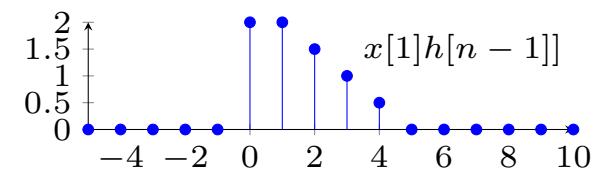
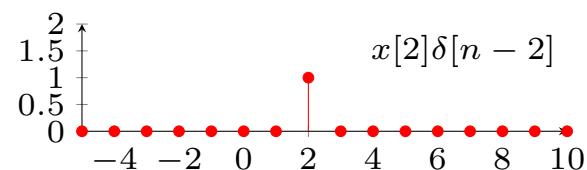
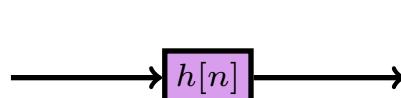
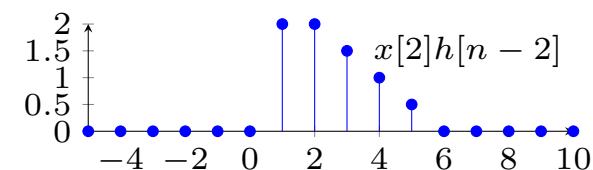
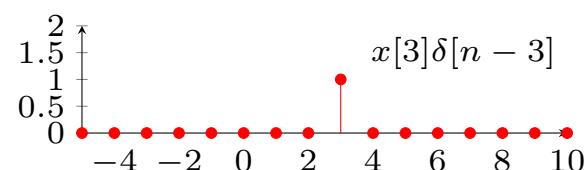
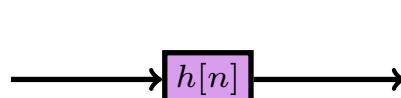
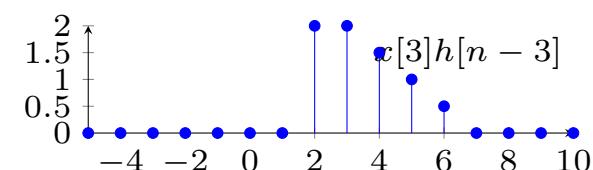
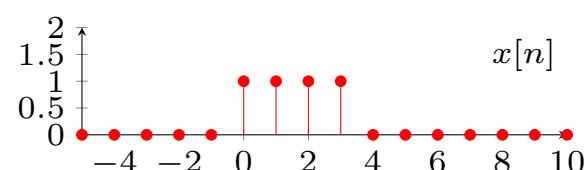
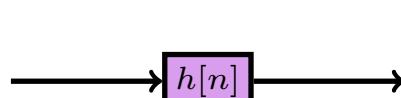
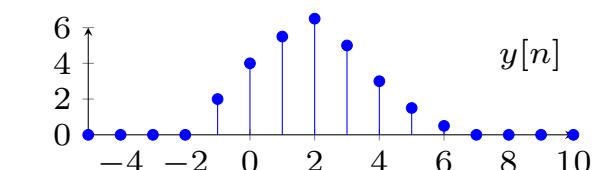
$$x[n] = \sum_k x[k] \delta[n - k] \rightarrow \text{LTI System} \rightarrow y[n] = \sum_k x[k] h[n - k] \quad (\text{linearity})$$

$$x[n] = x[n] * \delta[n] = \sum_k x[k] \delta[n - k] \quad (\text{input})$$

$$y[n] = x[n] * h[n] = \sum_k x[k] h[n - k] \quad (\text{output})$$

the output is the superposition of overlapping delayed replicas of the impulse response

convolution: illustration of LTI system properties



$$x[n] = \sum_k x[k]\delta[n - k]$$

$$y[n] = \sum_k x[k]h[n - k]$$

two forms of convolution sum

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Change variables using $m = n - k$ or $k = n - m$

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[n-m]h[m]$$

impulse response tells us about LTI system stability

Suppose input is bounded: $|x[n]| \leq A$ for all n . Is the output bounded?

$$\begin{aligned} |y[n]| &= \left| \sum_k x[k]h[n-k] \right| \\ &\leq \sum_k |x[k]h[n-k]| \quad (\text{triangle inequality}) \\ &= \sum_k |x[k]| \cdot |h[n-k]| \\ &\leq A \sum_k |h[n-k]| < \infty \end{aligned}$$

provided $h[n]$ is absolutely summable, i.e.

$$\sum_k |h[k]| < \infty$$

LTI system is stable if impulse response is absolutely summable.

impulse response tells us about LTI system causality

$$\begin{aligned} y[n] = x[n] * h[n] &= \sum_{k=-\infty}^{\infty} x[n-k]h[k] \\ &= \cdots + x[n-2]h[2] + x[n-1]h[1] && (\text{past inputs}) \\ &+ x[n]h[0] && (\text{present input}) \\ &+ x[n+1]h[-1] + x[n+2]h[-2] + \cdots && (\text{future inputs}) \end{aligned}$$

For causality $y[n]$ should not depend on future inputs, i.e. $x[n+1], x[n+2], \dots$.
Set $h[n] = 0$ for $n < 0$.

LTI system is causal if impulse response is causal.

$$y[n] = \sum_{k=0}^{\infty} h[k]x[n-k] = \sum_{k=-\infty}^n h[n-k]x[k] \quad (\text{causal systems})$$

examples

$$h[n] = 2^n u[n]$$

causal, unstable

$$h[n] = u[n]$$

causal, unstable

$$h[n] = a^n u[n], \quad |a| < 1$$

causal, stable

$$h[n] = \begin{cases} \frac{1}{2N+1}, & -N \leq n \leq N \\ 0, & \text{otherwise} \end{cases}$$

non-causal, stable

$$h[n] = \delta[n - d], \quad d > 0$$

causal, stable

$$h[n] = \delta[n + 1] - \delta[n]$$

non-causal, stable

$$h[n] = \delta[n] - \delta[n - 1]$$

causal, stable

- LTI FIR systems are always stable
- Non-causal LTI FIR systems can be delayed to be causal
- Have to check stability in IIR LTI systems
- FIR/IIR distinction is new for discrete-time systems
- In continuous-time, all impulse responses are IIR

example

$$h[n] = a^{|n|}, \quad |a| < 1 = \begin{cases} a^{-n}, & n < 0 \\ 1, & n = 0 \\ a^n, & n > 0 \end{cases}$$

Is it stable?

$$\sum_{n=-\infty}^{\infty} |h[n]| = \frac{1 + |a|}{1 - |a|} < \infty \quad \text{yes, it is stable}$$

Is it causal? No.

How could we make this system causal?

1. Truncate tails when $|h[n]| < \epsilon$. This makes it FIR.
2. Delay to make it causal.

This gives causal, stable LTI system that approximates the original system.

summary

- Convolution formula for LTI systems is derived using:
 1. sifting property of Kronecker delta function
 2. representation of the input using Kronecker delta functions
 3. time invariance
 4. linearity
- output of LTI system computed for any input by convolution with impulse response
- impulse response $h[n]$ of LTI system tells us about
 1. causality: $h[n] = 0$ for $n < 0$
 2. stability: $\sum_n |h[n]| < \infty$