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sifting property of Kronecker delta

x[n]δ[n− k] = x[k]δ[n− k] for all n
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representing a constant signal
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representation using Kronecker delta

Note that:

1 =
∑
k

δ[n− k]

Now multiply signal x[n] by 1 and then sift:

x[n] = x[n] · 1 = x[n]

(∑
k

δ[n− k]

)
︸ ︷︷ ︸

1

=
∑
k

x[n]δ[n− k] =
∑
k

x[k]δ[n− k]

We have:

x[n] =
∑
k

x[k]δ[n− k] = x[n] ∗ δ[n]
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representation using Kronecker delta
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impulse response of LTI systems

LTI Systemx[n] y[n]

LTI Systemδ[n] h[n] (impulse response)

LTI Systemδ[n− k] h[n− k] (time invariance)

LTI Systemx[n] =
∑
k

x[k]δ[n− k] y[n] =
∑
k

x[k]h[n− k] (linearity)

x[n] = x[n] ∗ δ[n] =
∑
k

x[k]δ[n− k] (input)

y[n] = x[n] ∗ h[n] =
∑
k

x[k]h[n− k] (output)

the output is the superposition of overlapping
delayed replicas of the impulse response
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convolution: illustration of LTI system properties
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two forms of convolution sum

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[k]h[n− k]

Change variables using m = n− k or k = n−m

y[n] = x[n] ∗ h[n] =
∞∑

m=−∞
x[n−m]h[m]
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impulse response tells us about LTI system stability

Suppose input is bounded: |x[n]| ≤ A for all n. Is the output bounded?

|y[n]| =

∣∣∣∣∣∑
k

x[k]h[n− k]

∣∣∣∣∣
≤
∑
k

|x[k]h[n− k]| (triangle inequality)

=
∑
k

|x[k]| · |h[n− k]|

≤ A
∑
k

|h[n− k]| <∞

provided h[n] is absolutely summable, i.e.∑
k

|h[k]| <∞

LTI system is stable if impulse response is absolutely summable.
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impulse response tells us about LTI system causality

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[n− k]h[k]

= · · ·+ x[n− 2]h[2] + x[n− 1]h[1] (past inputs)

+ x[n]h[0] (present input)

+ x[n+ 1]h[−1] + x[n+ 2]h[−2] + · · · (future inputs)

For causality y[n] should not depend on future inputs, i.e. x[n + 1], x[n + 2], · · · .
Set h[n] = 0 for n < 0.

LTI system is causal if impulse response is causal.

y[n] =

∞∑
k=0

h[k]x[n− k] =
n∑

k=−∞

h[n− k]x[k] (causal systems)
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examples

h[n] = 2nu[n] causal, unstable

h[n] = u[n] causal,unstable

h[n] = anu[n], |a| < 1 causal, stable

h[n] =

{
1

2N+1, −N ≤ n ≤ N
0, otherwise

non-causal, stable

h[n] = δ[n− d], d > 0 causal, stable

h[n] = δ[n+ 1]− δ[n] non-causal, stable

h[n] = δ[n]− δ[n− 1] causal, stable

• LTI FIR systems are always stable

• Non-causal LTI FIR systems can be delayed to be causal

• Have to check stability in IIR LTI systems

• FIR/IIR distinction is new for discrete-time systems

• In continuous-time, all impulse responses are IIR
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example

h[n] = a|n|, |a| < 1 =


a−n, n < 0

1, n = 0

an, n > 0

Is it stable?

∞∑
n=−∞

|h[n]| = 1 + |a|
1− |a|

<∞ yes, it is stable

Is it causal? No.

How could we make this system causal?

1. Truncate tails when |h[n]| < ε. This makes it FIR.

2. Delay to make it causal.

This gives causal, stable LTI system that approximates the original system.
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summary

• Convolution formula for LTI systems is derived using:

1. sifting property of Kronecker delta function
2. representation of the input using Kronecker delta functions
3. time invariance
4. linearity

• output of LTI system computed for any input by convolution with impulse
response

• impulse response h[n] of LTI system tells us about

1. causality: h[n] = 0 for n < 0
2. stability:

∑
n |h[n]| <∞
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