

# ECE 3640 - Discrete-Time Signals and Systems

**Complex Exponential Signals:**  $e^{j2\pi Ft}$ ,  $e^{j2\pi fn}$

Jake Gunther



Department of Electrical & Computer Engineering

## abbreviations & notation

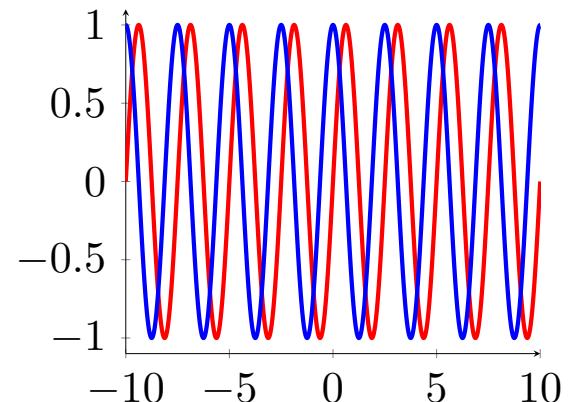
- complex exponential = CE,  $e^{j2\pi Ft}, e^{j2\pi fn}$
- continuous-time = CT,  $t \in \mathbb{R}$
- discrete-time = DT,  $n \in \mathbb{Z}$
- set of real numbers =  $\mathbb{R}$
- set of integers =  $\mathbb{Z}$
- set of rational numbers =  $\mathbb{Q}$
- set of complex numbers =  $\mathbb{C}$

# types of CT complex exponential signals

The same types are defined for DT CE signals.

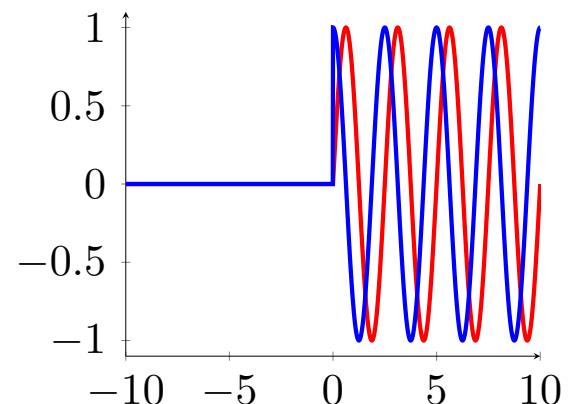
everlasting CT CE:

$$e^{j2\pi F t}, -\infty < t < \infty$$



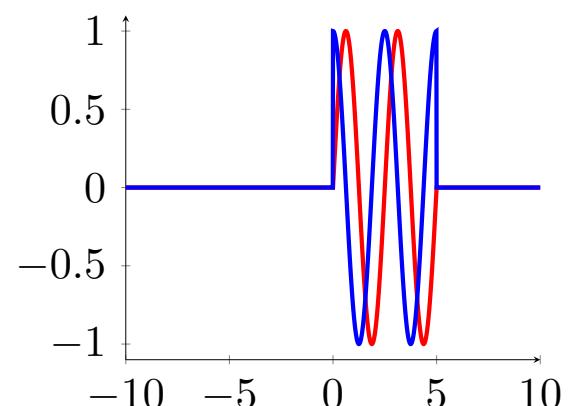
causal CT CE:

$$e^{j2\pi F t} u(t) = \begin{cases} e^{j2\pi F t}, & 0 \leq t < \infty \\ 0, & -\infty < t < 0 \end{cases}$$

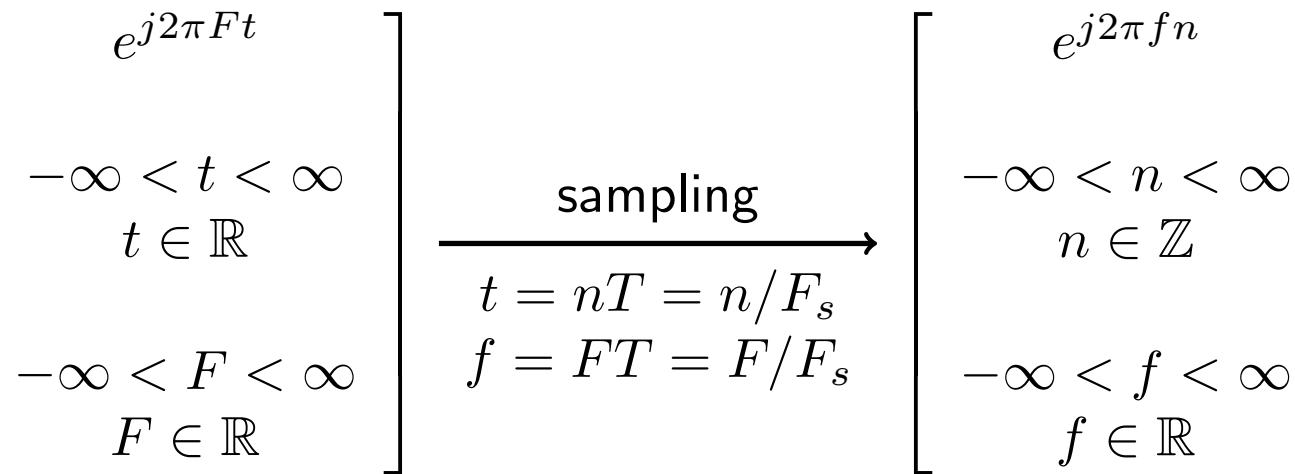


finite (windowed) CT CE:

$$e^{j2\pi F t} [u(t) - u(t - W)] = \begin{cases} e^{j2\pi F t}, & 0 \leq t < W \\ 0, & t < 0 \text{ or } t \geq W \end{cases}$$



# CT & DT CE signals

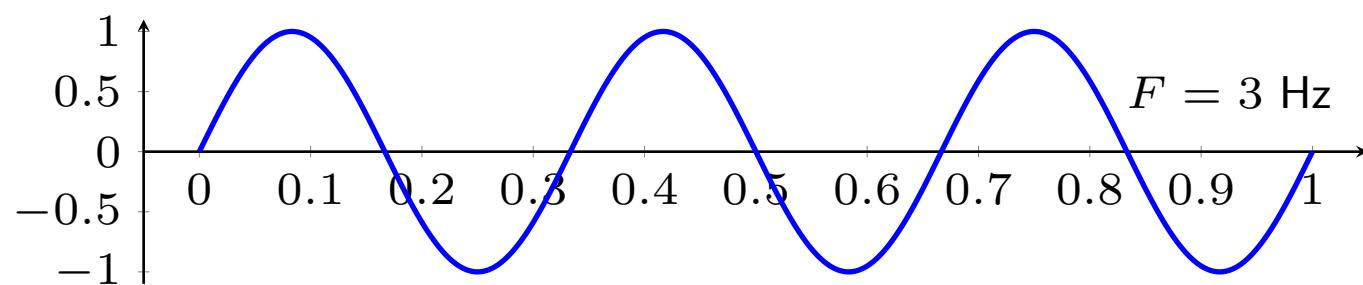
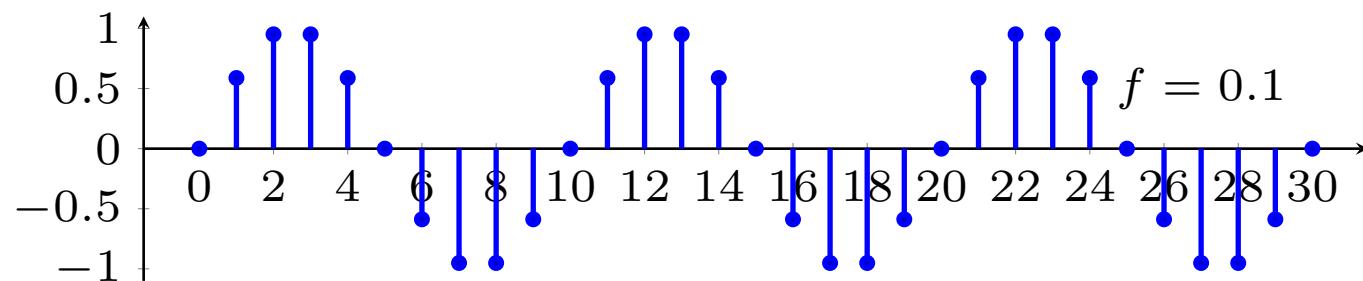


- $f = FT = F/F_s$  is often referred to as “normalized” frequency
- $T$  is the sample period or sample interval [seconds/sample]
- $F_s = 1/T$  is the sample rate or sample frequency [samples/second]

## units

$$F \left[ \text{Hz} = \frac{\text{cycles}}{\text{second}} \right]$$

$$f = F \left[ \text{Hz} = \frac{\text{cycles}}{\text{second}} \right] \cdot T \left[ \frac{\text{seconds}}{\text{sample}} \right] = (FT) \left[ \frac{\text{cycles}}{\text{sample}} \right]$$



## angular and cyclic frequency

$$\Omega \left[ \frac{\text{radians}}{\text{second}} \right] = 2\pi \left[ \frac{\text{radians}}{\text{cycle}} \right] F \left[ \frac{\text{cycles}}{\text{cycle}} \right]$$

$$\omega \left[ \frac{\text{radians}}{\text{sample}} \right] = 2\pi \left[ \frac{\text{radians}}{\text{cycle}} \right] f \left[ \frac{\text{cycles}}{\text{sample}} \right]$$

(I am going to use cyclic frequency on the following pages.)

# periodic signals

- continuous-time:

$$x(t + kT) = x(t), \text{ for all } t \in \mathbb{R} \text{ and } k \in \mathbb{Z}$$

Periodic with period  $T \in \mathbb{R}$  [seconds].

- discrete-time

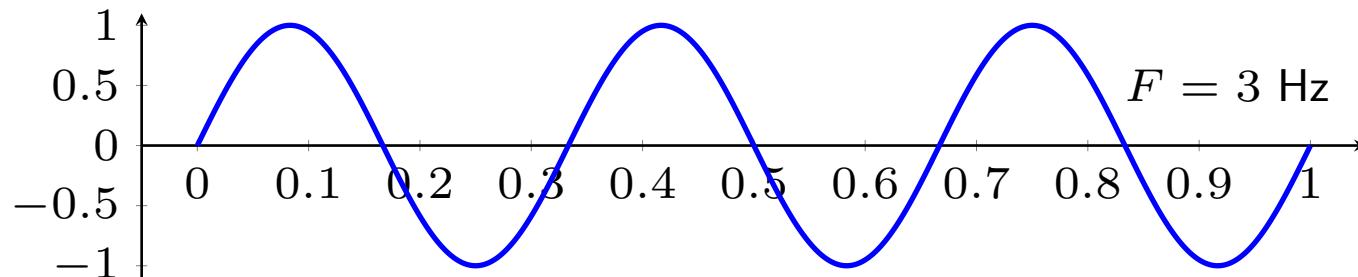
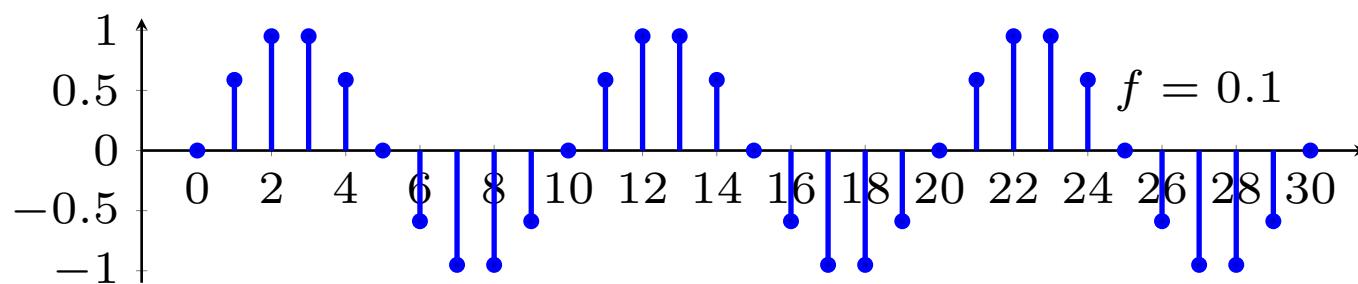
$$x[n + kN] = x[n], \text{ for all } n \in \mathbb{Z} \text{ and } k \in \mathbb{Z}$$

Periodic with period  $N \in \mathbb{Z}$  [samples].

The period is always the smallest number  $T$  or  $N$  satisfying these definitions.

# periodic signals

What are frequency and period?



# periodic CT CE signals

$$x(t) = e^{j2\pi F t}$$

$$x(t + T) = x(t), \text{ for all } t \in \mathbb{R}$$

$$e^{j2\pi F t} e^{j2\pi F T} = e^{j2\pi F t}, \text{ for all } t \in \mathbb{R}$$

$$e^{j2\pi F T} = 1$$

$$FT = 1 \quad (\text{time } T \text{ when CE completes one full cycle})$$

$$F = \frac{m}{T}$$

$$F = \frac{1}{T}$$

- $e^{j2\pi F t}$  is periodic for all frequencies
- the period is  $T = 1/F$

# periodic DT CE signals

$$x[n] = e^{j2\pi f n}$$

$$x[n+N] = x[n], \text{ for all } n \in \mathbb{Z}$$

$$e^{j2\pi f n} e^{j2\pi f N} = e^{j2\pi f n}, \text{ for all } n \in \mathbb{Z}$$

$$e^{j2\pi f N} = 1$$

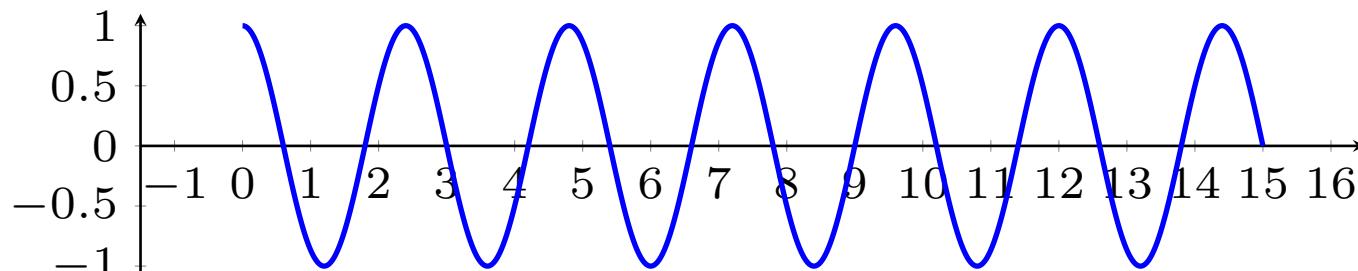
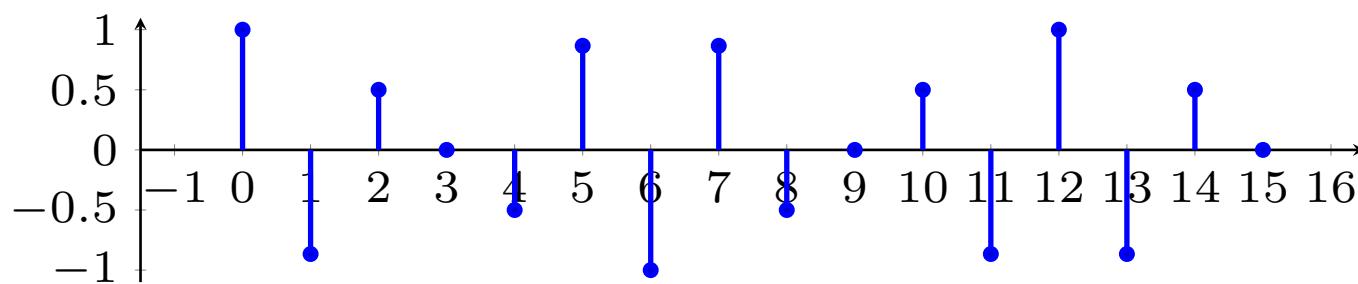
$fN = m \in \mathbb{Z}$  (sample  $N$  when CE completes  $m$  cycles)

$$f = \frac{m}{N}$$

$$f = \frac{p}{Q} \quad (\text{reduce fraction})$$

- $e^{j2\pi f n}$  is periodic only for rational frequencies
- the period is  $Q$

## periodic DT CE signals



- Discrete sequence has period  $N = 12$
- Envelope completes  $m = 5$  cycles
- Frequency  $f = \frac{5}{12}$

## CT CE are unique

suppose  $e^{j2\pi F_1 t} = e^{j2\pi F_2 t}$  for all  $t$

$$e^{j2\pi(F_1 - F_2)t} = 1 \text{ for all } t$$

$$(F_1 - F_2)t \in \mathbb{Z} \text{ for all } t$$

$$F_1 - F_2 = 0$$

$$F_1 = F_2$$

- Same signal  $\Rightarrow$  same frequency
- Different frequency  $\Rightarrow$  different signals

## DT CE are not unique

suppose  $e^{j2\pi f_1 n} = e^{j2\pi f_2 n}$  for all  $n$

$$e^{j2\pi(f_1 - f_2)n} = 1 \quad \text{for all } n$$

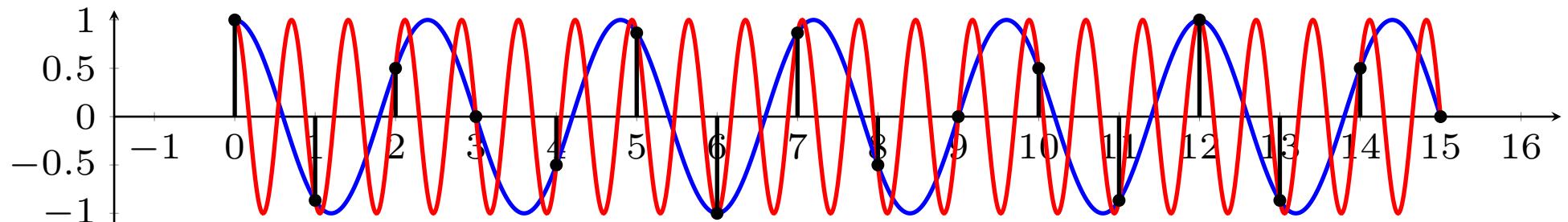
$$(f_1 - f_2)n \in \mathbb{Z} \quad \text{for all } n$$

$$f_1 - f_2 \in \mathbb{Z}$$

$$f_1 = f_2 + k, \quad k \in \mathbb{Z}$$

- Same signal  $\Rightarrow$  frequencies separated by an integer
- Frequencies separated by non-integer  $\Rightarrow$  different signals

## periodic DT CE signals



What is plotted?

- $\cos\left(2\pi\left(\frac{5}{12}\right)t\right)$
- $\cos\left(2\pi\left(\frac{5}{12} + 1\right)t\right) = \cos\left(2\pi\left(\frac{17}{12}\right)t\right)$
- $\cos\left(2\pi\left(\frac{5}{12}\right)n\right) = \cos\left(2\pi\left(\frac{17}{12}\right)n\right)$  ← different frequencies, same samples!

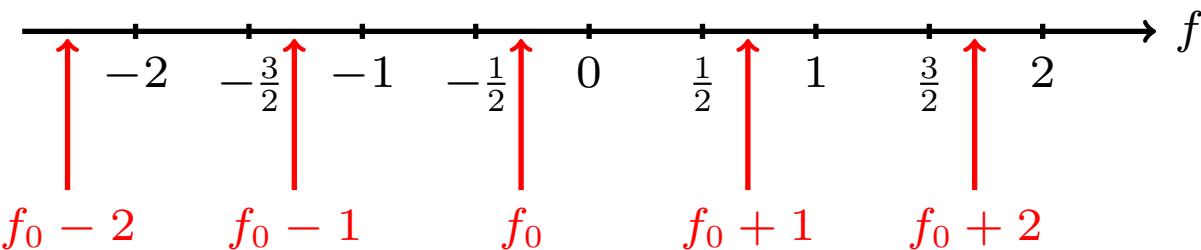
CT CE signals with different frequencies are different.

DT CE signals with frequencies related by  $f_2 = f_1 + k$  are the same.

This is called aliasing.

Aliasing caused by sinusoids passing through same points at sample times.

# aliasing

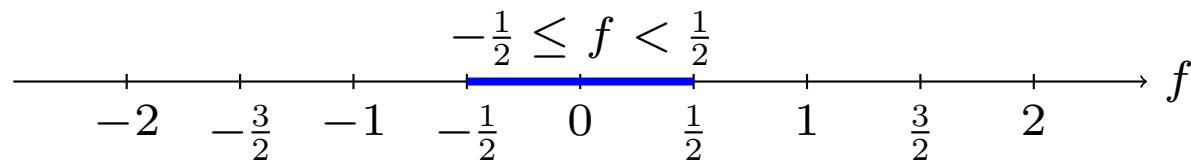
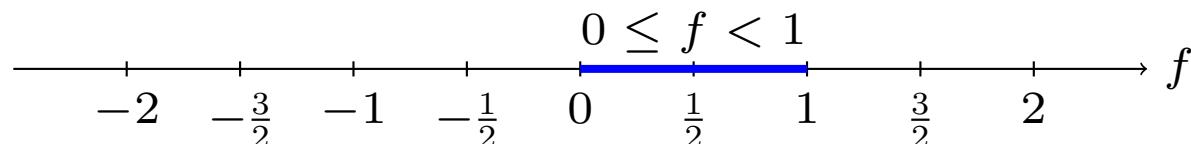


These frequencies all give the same complex exponential sequence:

$$e^{j2\pi(f_0-2)n} = e^{j2\pi(f_0-1)n} = e^{j2\pi f_0 n} = e^{j2\pi(f_0+1)n} = e^{j2\pi(f_0+2)n}, \text{ for all } n.$$

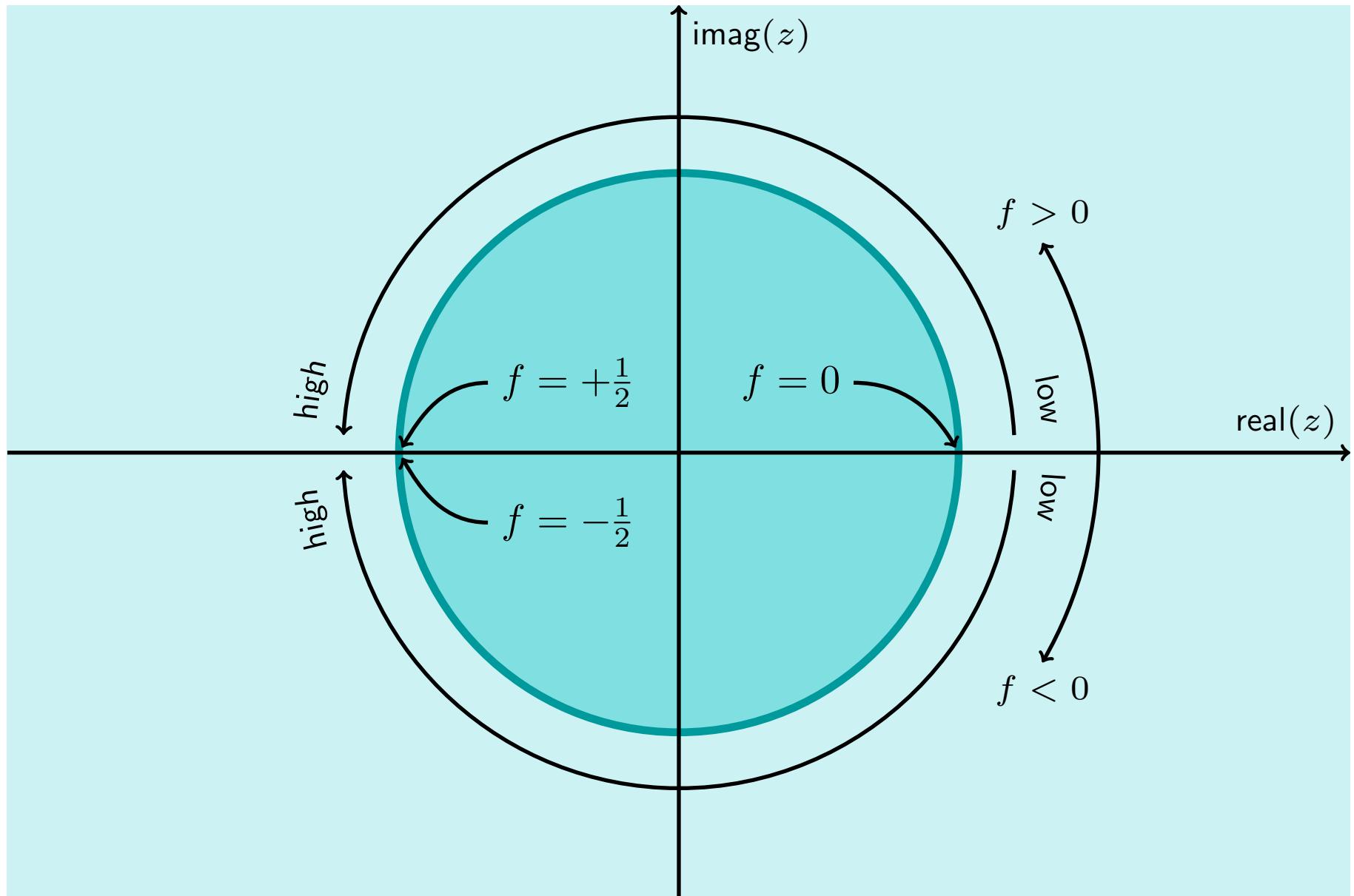
- these signals are all aliases of one another
- high frequencies alias to low frequencies
- different CT frequencies give distinct CT CE waveforms
- different DT frequencies have aliases yielding identical DT CE sequences

## fundamental interval of unique DT frequencies

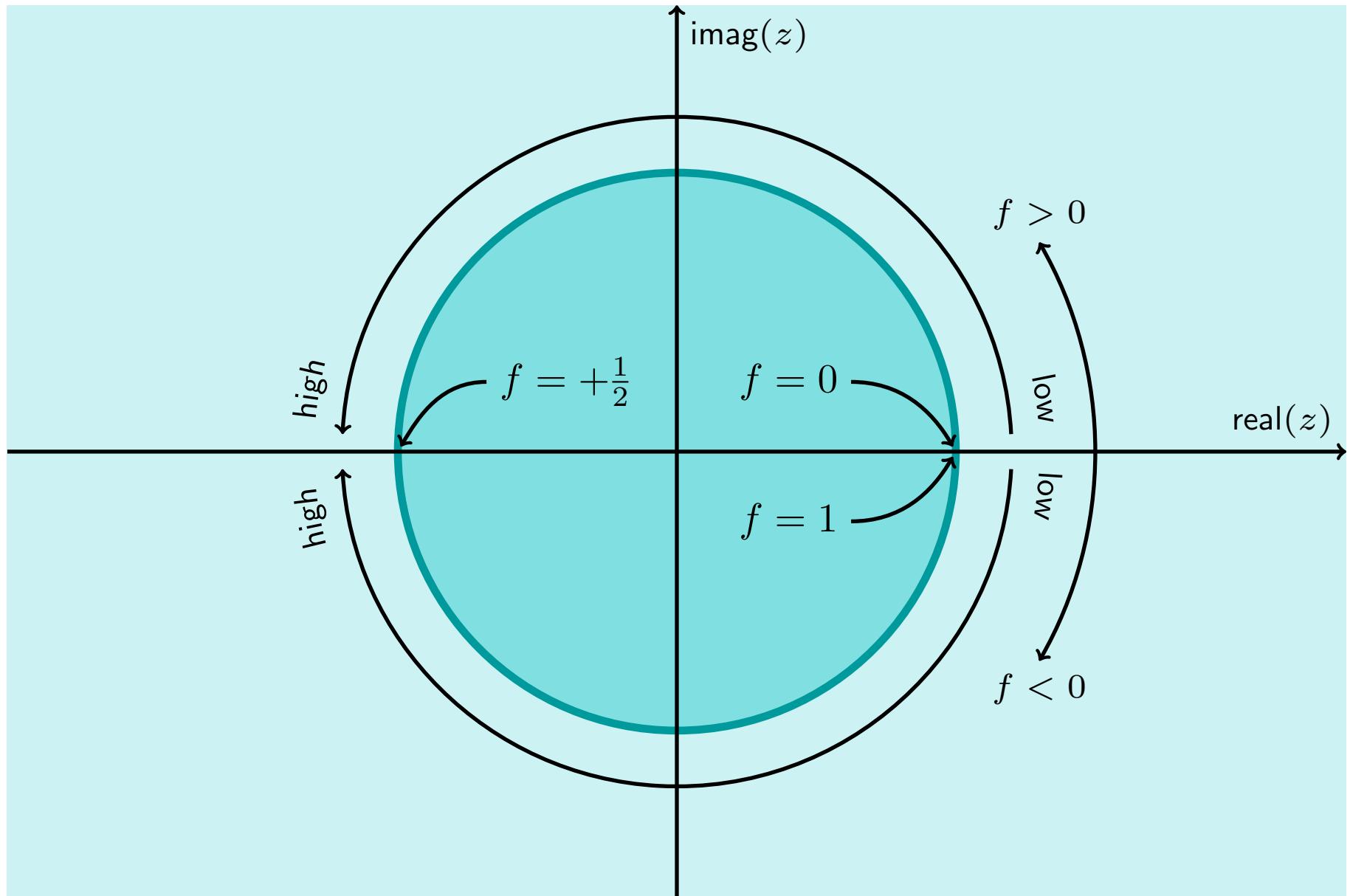


- Fundamental interval has width of 1 [cycle/sample].
- Fundamental interval can be placed anywhere, but these two choices are common.
- Fundamental interval contains unique frequencies.
- Frequencies outside fundamental interval have aliases in fundamental interval.

**fundamental frequency interval**  $-\frac{1}{2} \leq f < \frac{1}{2}$



**fundamental frequency interval  $0 \leq f < 1$**

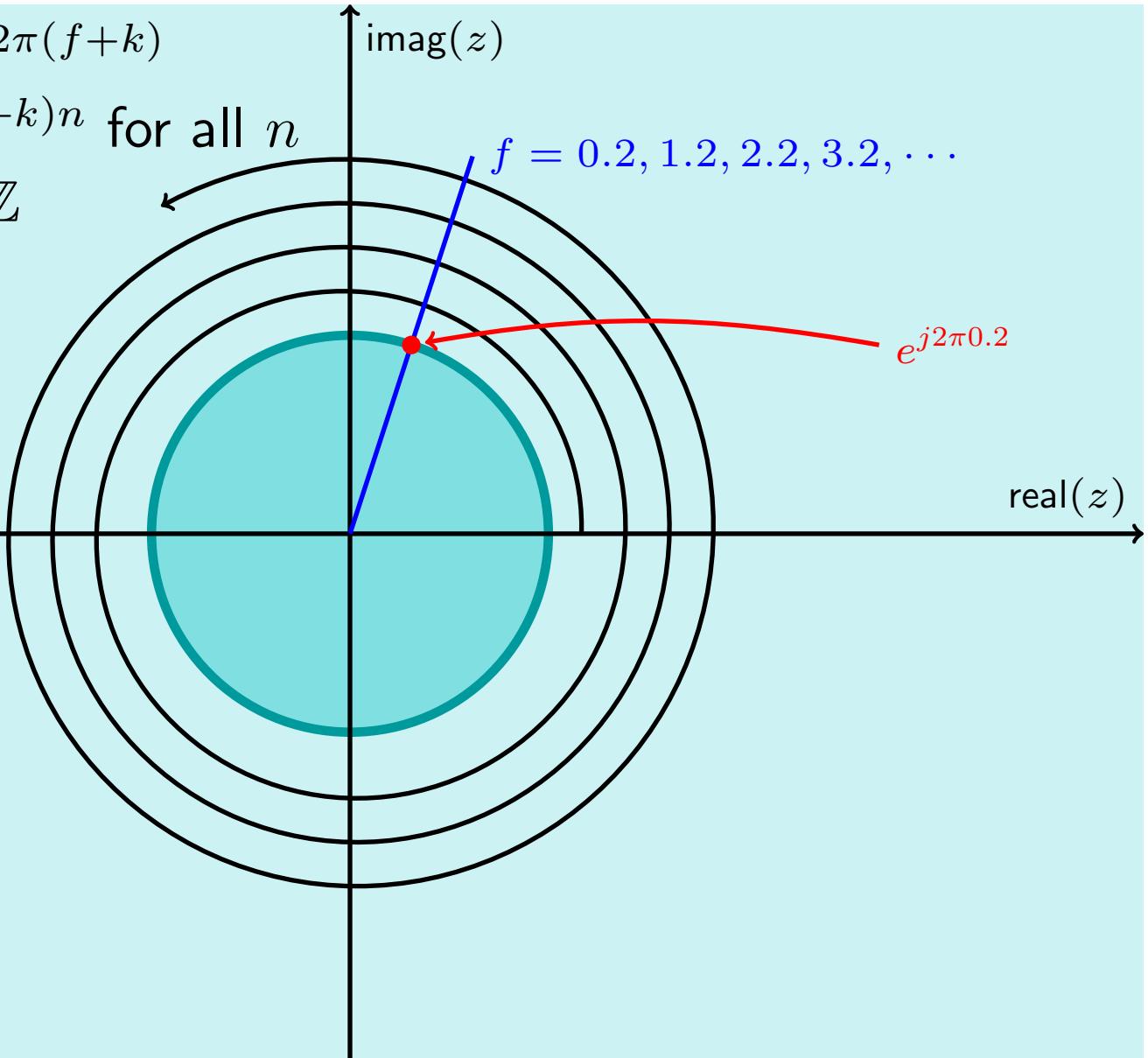


# frequency aliasing

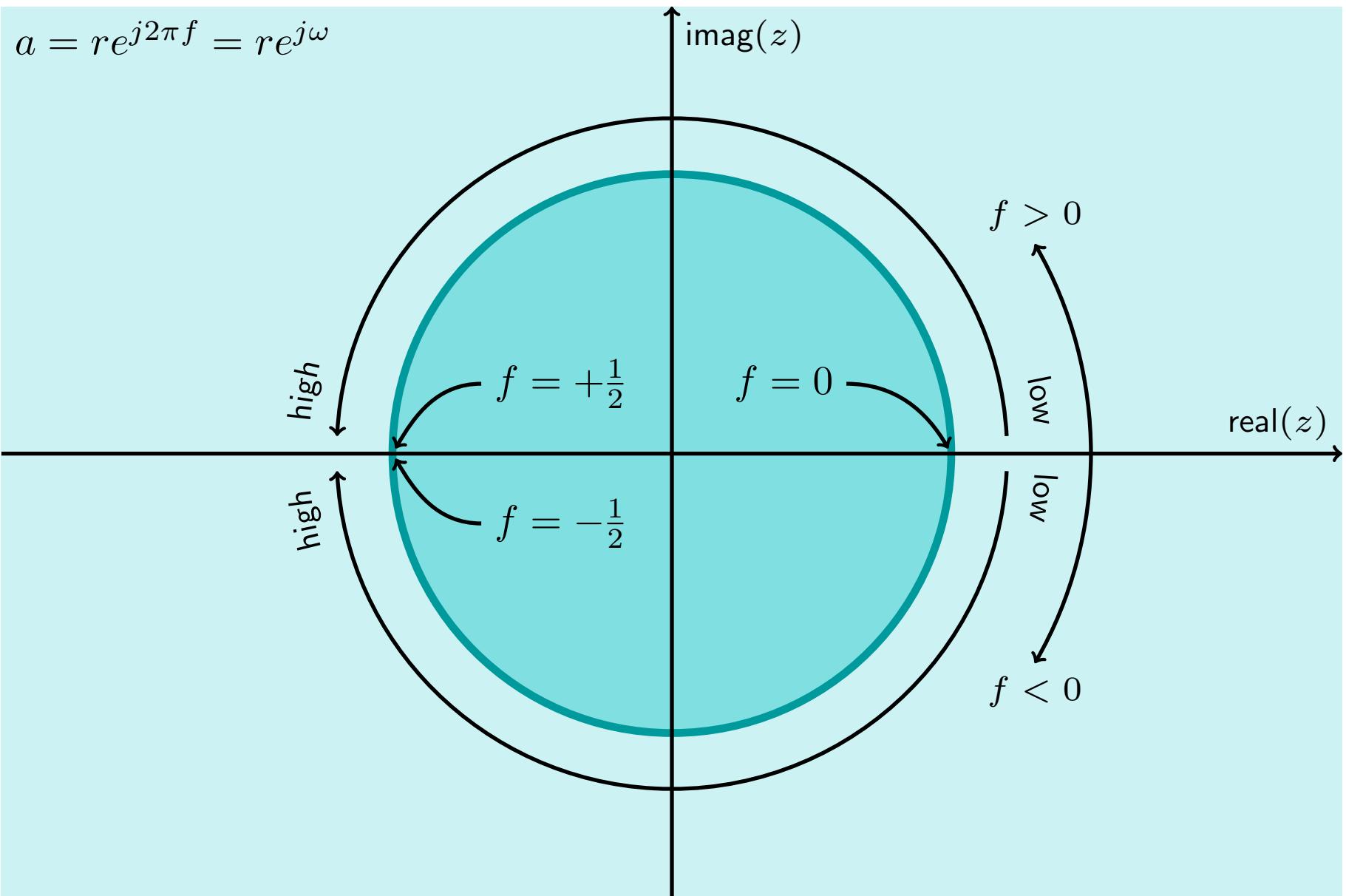
$$e^{j2\pi f} = e^{j2\pi(f+k)}$$

$$e^{j2\pi f n} = e^{j2\pi(f+k)n} \text{ for all } n$$

$$k \in \mathbb{Z}$$



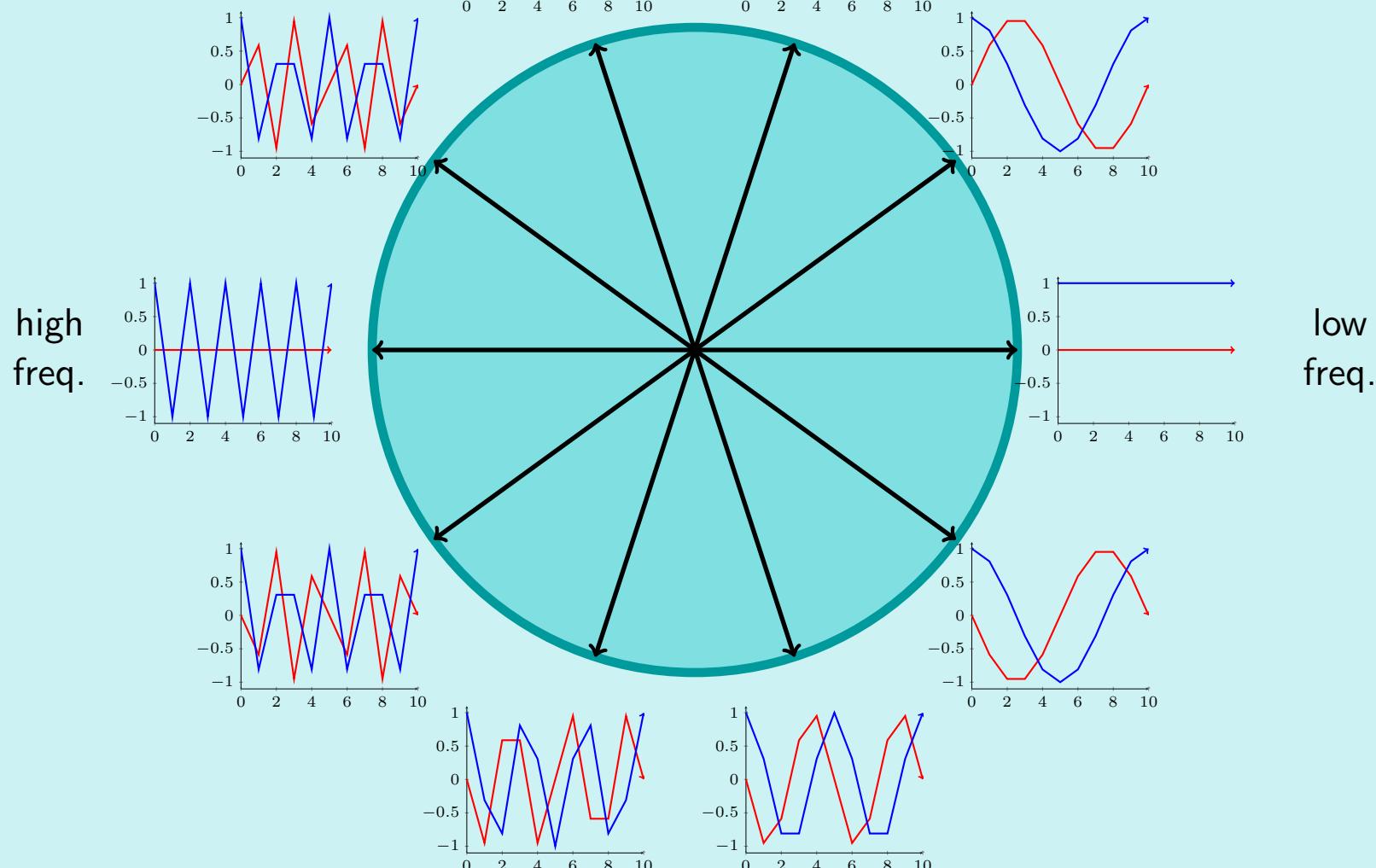
## frequency of exponential $x[n] = a^n u[n]$



# frequency of DT CE

$$a = r e^{j2\pi f}$$

$$f = 0, \frac{1}{10}, \frac{2}{10}, \dots, \frac{9}{10}$$



## oscillatory behavior of CT CE

$$e^{j2\pi F t}$$

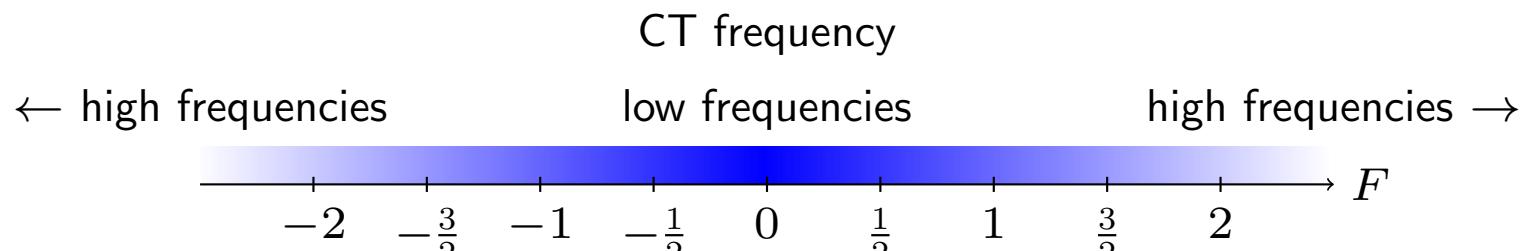
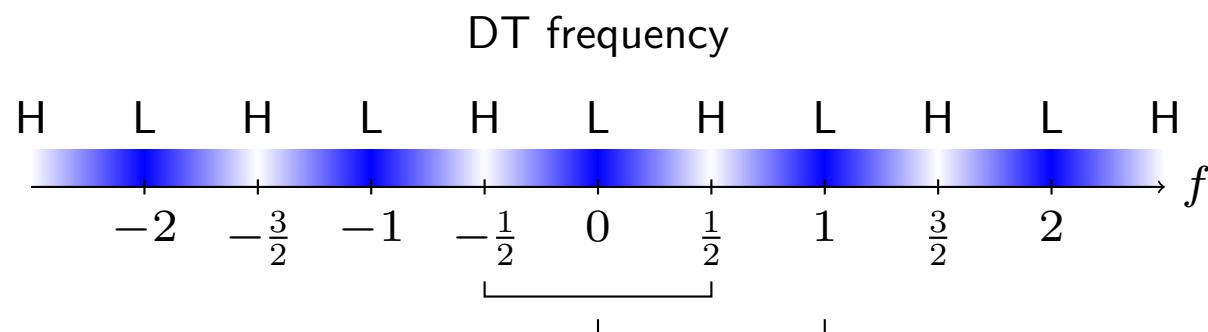
rate of oscillation increases indefinitely as  $F \rightarrow \infty$  or as  $T = 1/F \rightarrow 0$ .

## oscillatory behavior of DT CE

$$e^{j2\pi fn}$$

- rate of oscillation increases on  $0 \leq f < \frac{1}{2}$  and decreases on  $\frac{1}{2} \leq f < 1$ .
- “low” frequencies near  $0, \pm 1, \pm 2, \dots$
- “high” frequencies near  $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \dots$
- $f = 0$  is the lowest frequency
- $f = \frac{1}{2} = -\frac{1}{2}$  is the highest frequency

# CT and DT frequency



## phase shifts and time shifts

$$e^{j2\pi F(t-\tau)} = e^{j[2\pi F t - \varphi]}, \quad \varphi = 2\pi F \tau \text{ [radians]}$$

$$e^{j2\pi f(n-m)} = e^{j[2\pi f n - \varphi]}, \quad \varphi = 2\pi f m \text{ [radians]}$$

- CT: For every phase shift, there is a corresponding time shift of the waveform.
- DT: For some phase shifts, there is a corresponding time shift of the sequence.

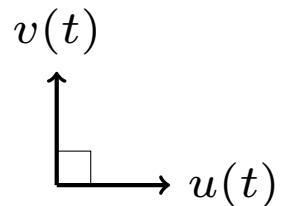
## geometry of CT signals

inner product and norm (length) of CT signals

$$\langle u(t), v(t) \rangle = \int u(\tau) v^*(\tau) d\tau = \|u(t)\| \cdot \|v(t)\| \cos \theta$$

$$\|u(t)\| = \left[ \int |u(\tau)|^2 d\tau \right]^{\frac{1}{2}} = \langle u(t), u(t) \rangle^{\frac{1}{2}}$$

When  $\langle u(t), v(t) \rangle = 0$ , then  $\theta = 90$  degrees and  $u(t)$  and  $v(t)$  are orthogonal.



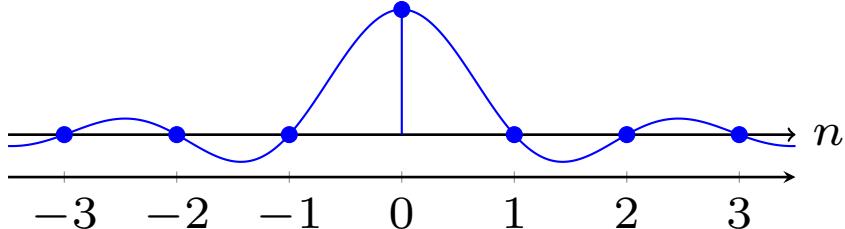
## harmonically related CT CE signals are orthogonal

$$e^{j2\pi kFt}, \quad k = 0, \pm 1, \pm 2, \pm 3, \dots$$

are harmonically related CE signals

Given  $F$  and  $T = 1/F$ , measure the angle between  $k$ th and  $m$ th harmonics:

$$\begin{aligned}\langle e^{j2\pi kFt}, e^{j2\pi mFt} \rangle &= \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{j2\pi(k-m)Ft} dt \\ &= \frac{e^{\pi(k-m)} - e^{-\pi(k-m)}}{F \cdot 2j \cdot \pi(k-m)} \\ &= T \frac{\sin(\pi(k-m))}{\pi(k-m)} \\ &= T \delta[k - m] \\ &= \begin{cases} T, & k = m, \\ 0, & k \neq m \end{cases}\end{aligned}$$



There are an infinite number of orthogonal harmonically related CT CE signals.

# CTFS

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi \frac{kt}{T}}, \quad F = \frac{1}{T} \quad (\text{synthesis})$$

$$X_k = \frac{1}{T} \int_0^T x(t) e^{-j2\pi \frac{kt}{T}} = \frac{1}{T} \left\langle x(t), e^{j2\pi \frac{kt}{T}} \right\rangle \quad (\text{analysis})$$

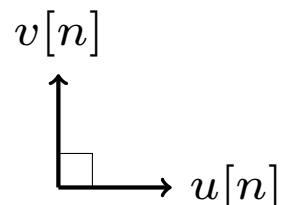
# geometry of DT signals

inner product and norm (length) of DT signals

$$\langle u(t), v(t) \rangle = \sum_n u[n]v^*[n] = \|u[n]\| \cdot \|v[n]\| \cos \theta$$

$$\|u[n]\| = \left[ \sum_n |u[n]|^2 \right]^{\frac{1}{2}} = \langle u[n], u[n] \rangle^{\frac{1}{2}}$$

When  $\langle u[n], v[n] \rangle = 0$ , then  $\theta = 90$  degrees and  $u[n]$  and  $v[n]$  are orthogonal.



## harmonically related DT CE signals are orthogonal

$$e^{j2\pi kf_n}, \quad k = 0, \pm 1, \pm 2, \pm 3, \dots$$

are harmonically related DT CE signals

Given  $f = 1/N$  where  $N$  is the period, measure the angle between  $k$ th and  $m$ th harmonics:

$$\langle e^{j2\pi kf_n}, e^{j2\pi mf_n} \rangle = \sum_{n=0}^{N-1} e^{j2\pi(k-m)f_n} = \begin{cases} N, & k = m + lN, l \in \mathbb{Z} \\ \frac{1 - e^{j2\pi(k-m)f}}{1 - e^{j2\pi(k-m)f}} & \text{otherwise} \end{cases}$$

Consider the case  $k \neq m + lN$ ,

$$\begin{aligned} \frac{1 - e^{j2\pi(k-m)f}}{1 - e^{j2\pi(k-m)f}} &= \frac{e^{\pi(k-m)} - e^{-j\pi(k-m)}}{e^{j\pi(k-m)f} - e^{-j\pi(k-m)f}} e^{-j\pi(k-m)f(N-1)} \\ &= \frac{\sin(\pi(k-m))}{\sin(\pi(k-m)/N)} e^{-j\pi(k-m)(N-1)/N} = 0 \end{aligned}$$

There are only  $N$  orthogonal harmonically related DT CE signals.

# DTFS

$$e^{j2\pi \frac{kn}{N}}, \quad k = 0, 1, 2, \dots, N-1$$

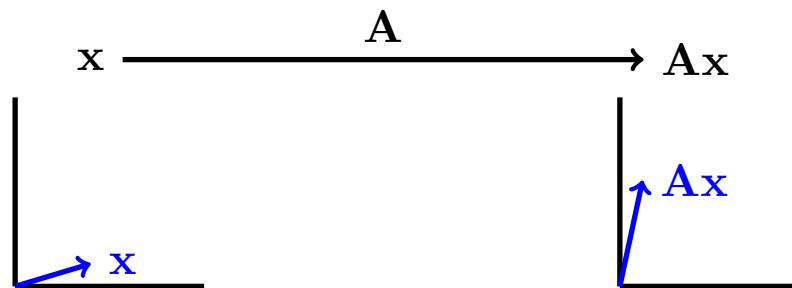
are a set of  $N$  orthogonal harmonically related DT CE signals.

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{kn}{N}}, \quad f = \frac{1}{N} \quad (\text{synthesis})$$

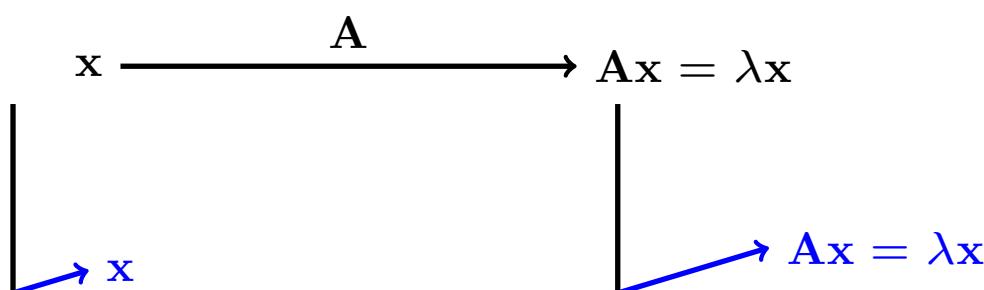
$$X_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}} = \frac{1}{N} \left\langle x[n], e^{j2\pi \frac{kn}{N}} \right\rangle \quad (\text{analysis})$$

# eigenvector of linear transformation

general vector  $x$ : scale and direction change



eigenvector  $x$ : scale changes, but direction stays the same



## everlasting CT CE are eigenfunctions of CT LTI systems

$$x(t) = e^{j2\pi F t} \longrightarrow \boxed{H(F)} \longrightarrow y(t) = H(F)e^{j2\pi F t} = H(F)x(t)$$

$$H(F) = |H(F)|e^{j\angle H(F)}$$

$$y(t) = h(t) * x(t) = \int h(\tau)x(t - \tau)d\tau = \underbrace{\int h(\tau)e^{-j2\pi F\tau}d\tau}_{\text{CTFT of } h(t)} e^{j2\pi F t} = H(F)x(t)$$

- CT CE signal passes through CT LTI system with only a complex scale factor (magnitude and phase adjustment)
- CT CE is an eigenfunction of CT LTI system
- $H(F) = \int h(t) \exp(-j2\pi F t)dt$  called frequency response of the system

# everlasting DT CE are eigenfunctions of DT LTI systems

$$x[n] = e^{j2\pi f n} \longrightarrow \boxed{H(f)} \longrightarrow y[n] = H(f)e^{j2\pi f n} = H(f)x[n]$$

$$H(f) = |H(f)|e^{j\angle H(f)}$$

$$y[n] = h[n] * x[n] = \sum_k h[k]x[n - k] = \underbrace{\sum_k h[k]e^{-j2\pi f k}}_{\text{DTFT of } h[n]} e^{j2\pi f n} = H(f)x[n]$$

- DT CE signal passes through DT LTI system with only a complex scale factor (magnitude and phase adjustment)
- DT CE is an eigenfunction of DT LTI system
- $H(f) = \sum_n h[n] \exp(-j2\pi f n)$  called frequency response of the system

# summary

| property                                          | CT CE                                     | DT CE                                                      |
|---------------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| frequency                                         | $F$ [Hz]<br>$\Omega$ [rads/sec]           | $f$ [cycles/sample]<br>$\omega$ [radians/sample]           |
| periodicity                                       | periodic for all $F$<br>period = $1/F$    | periodic for rational $f = k/N$<br>period = $N$            |
| uniqueness                                        | distinct when frequencies are distinct    | aliasing: $f$ and $f + k$ give same sequence               |
| oscillation                                       | rate increases indefinitely with $F$      | frequency axis alternates between high and low frequencies |
| phase shifts                                      | there is time shift for every phase shift | there are time shifts for some phase shifts                |
| number orthogonal harmonically related CE signals | $\infty$                                  | $N$                                                        |
| eigenfunction of LTI system                       | yes                                       | yes                                                        |
| frequency response                                | $H(F) = \int h(t)e^{-j2\pi F t} dt$       | $H(F) = \sum_n h[n]e^{-j2\pi f n}$                         |

# assignment

1. Define and sketch the three types of DT CE signals: everlasting, causal, and finite (windowed).
2. When a CT CE with frequency  $F = 440$  Hz is sampled at  $\frac{1}{T} = 8000$  samples/second, what is the frequency  $f$  of the resulting DT CE signal?
3. If a CT CE is reconstructed from DT CE with frequency  $f = 0.26257$  cycles/sample using a sample rate of  $\frac{1}{T} = 6$  Giga samples/second, what is the resulting frequency  $F$  in Hertz?
4. What is the angular frequency  $\omega$  associated with the cyclic frequency  $f = 0.26257$  cycles/sample?
5. Let  $x(t) = e^{jt}$  and  $x[n] = e^{jn}$ .
  - (a) Explain why  $x(t)$  is periodic but  $x[n]$  is not.
  - (b) What are the frequencies of  $x(t)$  and  $x[n]$ ?
  - (c) What is the period of  $x(t)$ ?

6. Let  $x[n] = e^{j2\pi f n}$  where  $f = \frac{213}{355}$ .

- (a) Explain why  $x[n]$  is periodic.
- (b) What is the period of  $x[n]$ ?

7. Do the following in Matlab.

- (a) Plot  $e^{j2\pi 0.1t}$  and  $e^{j2\pi 1.1t}$  for  $0 \leq t \leq 10$  on the same axis. (Hint: Use `t=[0:0.01:10];` to generate the time samples.)
- (b) On the same axis add  $e^{j2\pi 0.1n}$  and  $e^{j2\pi 1.1n}$  as stem plots. (Hint: Use Matlab's `stem` function instead of the `plot` function. Use `n=[0:10];` to generate the time samples.)
- (c) Explain why  $F = 0.1$  Hz and  $F = 1.1$  Hz give different CT CE signals while  $f = 0.1$  cycles/sample and  $f = 1.1$  cycles/sample gave the same DT CE sequence.
- (d) Draw the unit circle on the complex plane. Show the point  $e^{j2\pi 0.1} = e^{j2\pi 1.1}$  and use the fact  $(e^{j2\pi 0.1})^n = e^{j2\pi 0.1n} = (e^{j2\pi 1.1})^n = e^{j2\pi 1.1n}$  to explain frequency aliasing which is that  $e^{j2\pi f n} = e^{j2\pi(f+k)n}$  for all  $n$ , where  $k \in \mathbb{Z}$ .

8. Find a frequency alias for  $f = 37.8$  cycles/sample in the fundamental interval assuming:
- $0 \leq f < 1$  is the fundamental interval
  - $-\frac{1}{2} \leq f < \frac{1}{2}$  is the fundamental interval
9. Why is  $f = \pm\frac{1}{2}$  cycles/sample the highest frequency in discrete time?
10. Which is a higher frequency  $f = 26.4$  cycles/sample or  $38.9$  cycles/sample?  
(Hint: Compare their aliased frequencies.)
11. Explain why  $\frac{\sin(\pi n)}{\pi n} = \delta[n]$ . Include a sketch in your explanation.
12. Prove by integration that  $e^{j2\pi 10t}$  and  $e^{j2\pi 30t}$  are orthogonal over the time interval  $0 \leq t < 0.2$  seconds.
13. Prove by summation that  $e^{j\frac{2\pi 2n}{9}}$  and  $e^{j\frac{2\pi 4n}{9}}$  are orthogonal over  $0 \leq n < 9$ .

14. Suppose the everlasting DT CE sequence

$$x[n] = e^{j2\pi f n}, \quad -\infty < n < \infty$$

is applied to a DT LTI system with frequency response

$$H(f) = \frac{\sin(3\pi f)}{\sin(\pi f)} e^{-j2\pi f}.$$

What is the resulting output signal  $y[n]$  if

- (a)  $f = \frac{2}{3}$
- (b)  $f = \frac{1}{2}$